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FOREWORD

In presented study guides (modulus 3, 4) as to the parameters calculation the of
linear electric circuits include the methods of calculation:

— three-phase schemes at harmonic voltages and currents;

— three-phase schemes at symmetric polyharmonical voltages and currents;

— single-phase schemes at availability polyharmonical voltages and currents;

—as well as of chains in the transient work regimes.

This methodological instructions are the direct continuation of methodological
instructions as to the calculation of DC circuits, of single-phase sinusoidal currents
and voltages and magnetically coupled circuits (modulus 1, 2).

The calculation basic method of the linear electric circuits parameters at presence
high harmonics there is the superposition method which is based on Fourier
analysis. Presence polyharmonical voltages and currents in electric circuits brings
to the deterioration of electromagnetic energy using that quantitatively is
connected with the decrease of the power coefficient and to the appearance of the
additional distortion power. The distortion power is absent in circuits if curves of
current and voltage completely similar to each other, that always is fulfiled in
linear circuits at the presence of the sinusoidal sources of electromagnetic power.
Unstationary or transient processes are calculated by methods there are classic,
operational, of state variables or by method on basis of Duhamel integral using.
The calculation of transient processes by classical approach is based on differential
equations deciding with the laws of commutation and Kirchhoff's laws using. For
complex electric circuits the most acceptable there is the calculation of transient
processes by operational method, when differential equations in the real variable
area are replaced by algebraic equations in the images area. If the graph of forcing
action has piecewise-linear complex type, then circuit reaction determine by
Duhamel integral using. Calculation by the method of state variable prefer to
perform at the differential equations digital integrating.

Before the concrete parameters of electric circuits calculation precede epitomize
methodological instructions to which there are necessary follow at the calculation
of computative-graphic individual task.

In the every part end are presented typical questions at concrete tasks deciding. For
the verification of the material learning degree for every student imperatively is
recommended on one's own to decide indicated tasks.

Accuracy and the correctness of fulfiled computative-graphic tasks are verified by
the teachers of cycle and after the obviation of errors are assumed to interlocution.
The interlocution according to the results of performed computative-graphic tasks
presents there is dialog with teacher and answer toes set questions in the context of
in question topic, or answers to test tasks. The results of interlocution are
estimated as to five mark scale.



1. THE CALCULATION METHODS OF ELECTRIC THREE-
PHASE CIRCUITS WITHIN HARMONIC VOLTAGES AND
CURRENTS

1.1. Study guides as to the calculation of three-phase harmonic
circuits

1. The symmetrical feed source and symmetrical load.

1.1. Calculation three-phase circuit in symmetrical regime to add up to calculation
for single-phase circuit and is fulfiled to similarly of calculation single-phase
circuit. Any non-symmetric three-phase circuit can be considered as forked circuit
with three sources feeds, for calculation its are applied methods which been used
for the calculation of complex electric single-phase circuit. For example, for the
case the junction of the generator and load phases by Y-connection without neutral
wire at calculation currents and voltages can be applied the method of nodes
voltage in phasor form.

1.2. If three-phase symmetrical electric circuit is gathered as scheme of
symmetrical Y-connected and whereat of the linear wires impedances excellent
from zero, then follows to find the equivalent phase impedances, and then under
the Ohm's law to find phase I, (line current 1 ) current |, =Ep/Zp, where

Ep there is source supply phase voltage; Z, there is phase load impedance. Then
under the Ohm's law be found phase voltages on circuit's load. In such schemes
linear voltage modulus on load U, in /3 times as much of phase voltage Up

modulus (UL:x/§Up), and modulus of line and phase current there are equal

I =1p.

1.3. If three-phase symmetrical electric circuit is gathered as scheme of
symmetrical delta-connected at condition that linear wires impedance excellent
from zero, follows to transform the given connection of load impedances into
equivalent Y-connection and determine linear currents according to stage 1.2
instructions. The load phase currents at symmetrical delta-connected less than line

currents in /3 times as much (IL:\/§ Ip), and line voltages on load equals to
phase voltages U =U . The load phase voltages look for Ohm’s low.
The load phase voltages be find under Ohm’s low Up =1, - Z ;. If the impedance

of linear wires are neglect, then voltage on the phase of the feed source is equal to
voltage on the phase load Ep =U .

1.4. At symmetrical load active, the reactive and apparent powers of three-phase
system irrespective of the method of its connection (Y- or delta) is calculated on
one phase and are tripled

P=3-U, Ip-cosep :\/§'UL-IL -COS@p;



Q=3-U,-Ip-singp :\/§-UL 1 -sin@p;

S=3-U,-lp=+3-U_ 1.

1.5. So long as three-phase circuit there is sinusoidal current circuit that processes
research into its perform by the same methods and admittances. For these circuts
we may will apply the symbolic method of calculation, topographic voltages
diagram and vector currents diagram which make calculations more visual.

2. The symmetrical feed source and non-symmetrical load.
2.1. In non-symmetrical three-phase circuits (Z , #Z g # Z ¢ )in that gathered the

source and load phases by Y-connected and with the presence impedance in neutral
wire follows to determine the neutral bias voltage (potentials different between the
common points of source and load) U ,,, (voltage between the common points of

source and load)
Ea-Yat+tEg Yg+Ec-Ye
Ya+Yg+Yc +Ypn
where E 5, Eg, E there are phase voltages (EMF) on supply source; Y o,Yg,Y ¢
there are phase conductivities of three-phase scheme branches; Y \, there is neutral

wire conductivity.

Into the conductivities of the branches phase are taken into account the wire line
impedances. The load phase currents are determined under the Ohm's law
Ta=EA-Un) Yarlg=(Eg-Upn)Yg; lc=(Ec-Upnn)Yc-

The current in neutral wire determine under the first Kirchhoff's law
Inn=1a+1g+1c mmno 3akony Oma |y, =U p Y nne

2.2. If non-symmetric load, gathered by Y-connection and these is connecting to
power supply without neutral wire and we known linear voltage of three-phase
source, that load phase voltage find as to equations

U, Y YsYeaYe | _UscYo-UsmsYa.

a - Ya+Yg+Yc

UNn:

Ya+tYp+Yc

U UcaYa-Upc-Ys
~YC —

Ya+tYp+Ye
where Y +Yg+Yc - took into account the conductions of linear wires at

presence in it impedance.

Current in the load phases find under the Ohm's law
Ta=Up-Yailg=Ug-Yg;lc=Uc-Yc.

2.3. At the load connection by delta, in case negligibly small wires impedance, the
phase voltages of power supply and loads are equal each to other, the phase
currents in the load follows to determine under the Ohm's law, and currents in
linear wires follows to determine under to the first Kirchhoff's law

Fa=1ag —lcailg =lac —lagilc =lca—lgc:

2.4. At the impedances presence in linear wires follows to fulfil the equivalent
transform the load connection from triangle into star. After that determine phase



voltages in according to stage 2.2 instructions and linear currents under the Ohm's
law

Ta=Ua-Yailg=Ug-Yglc=Uc-Ye.

The load phase voltages of equivalent Y-connection also are determined under the
Ohm's law

Uan =la-ZaniUpn =15 -ZeniUcen =1c - Zen:

According to second Kirchhoff's law can determine the phase drop voltages on the
load impedances at connection as triangle
Upg=Up-UpgiUpgc=Ug-UciUcpa=Uc -U,.

Under the Ohm's law we determine load phase currents

Tag=Uas/Zpgilec =Ugc/Zacilca=UcalZea:

2.5. Active and reactive powers are determined as sum of the active and reactive
powers of the load phases, of the line wires and neutral wire

P:UA . IA COS@A +UB . IB COS@B +UC . IC COS¢C +

+UNn ) INn *COSPnp

+UNn ° INn S|n¢Nn.
An apparent power in non-symmetric load

S=P?+Q%

3. The non-symmetrical feed source and symmetrical load.

3.1. Calculation is conducted on basis of the method symmetrical components. In
the feed source EMF are separated out symmetrical components of zero, positive
and negative phase-sequences.

The zero phase-sequences EMF

Eno=Ea+Eg+EciEgy=Eco=Eno-

The positive phase-sequences EMF

E,+aEg +a’E
EMZ_A _g _C;Em:aZEA;Em:aEA,

where a=1-e1? - unit rotary multiplier.
The negative phase-sequences EMF
E,+a’Eg+aEc

3 Eg2 =

3.2. At the connection load's impedances in symmetrical star with impedance in
neutral wire the phase currents symmetrical components are determined as

Ep = aEpEcy =a’Ep.

LY, E a0 1o =1co=1no-
Zp +3Zyp,
E
_En 2y .
ln==—"ilg=a"lpglcp=2alp,



_En

Zp
3.3. At the connection load's impedances in symmetrical star without impedance in
neutral wire the phase currents symmetrical components are determined as

La0=0;lgg=1lco=1no-

. . 2
LAz 1y =al poilco =a"E .

=y 20 . _
Tn==—"ilg=a"lplcp=2alp,
Zp

E
_Eap. B . 2
Lapp==""1gy=al pp;lcr, =a"E p,.

£p
3.3. At the connection load's impedances in symmetrical triangle the phase currents
symmetrical components are determined as

| _Mq — —

Lago = »18co =1cao =1 apo-
Zp

| _@1 —a?] a —al

LN vI1gcr=a Lagiilcm =al aprs
Zo

I _EAz—Esz.l Cal e —a?E

taB2 = - isc2 =@l ica =@ Easz
Lp

3.4. Active and reactive powers at non-symmetrical feed source and symmetrical
load are determined on basis of the method symmetrical components

P=3-U AO ° I A0 COS(DAO +3-U BO ° | BO COS¢BO +3'UC0 . ICO COS¢C0,
Q=3-Upglag-SiN@pg+3-Ugg - I -sin gy +3-Ucg - g -SiN ¢o;

An apparent power

S=4P?+Q%.

Voltages and current of zero phase-sequences having in own phases in every
instant the same significance present single-phase current which equally divide
between three phases of system. The presence of voltage and current zero phase-
sequences even in symmetrical load brings to the appearance the beatings of
instant power, i.e. system to become unbalanced.

1.2. The calculation of the circuit parameters at the load gather in
symmetrical delta connection

Task. Into three-phase circuit with linear voltage U, =220V included load, which
connected by triangle. The impedance in each phase is Z , =10+10j, Ohm (Fig.
1.1). Find currents in each phase of load and line, calculate wattmeter indications.
Draw a superpose vector diagrams of currents and voltages.

Task solving.

1. Calculation currents fulfil by symbolic method. We accept the vector of the
linear voltage of three-phase the voltage source U ,g is furnished to real axis, and

the impedance of linear wires neglected, that is why can write down



U pg =U o5 =2208)7 B; U g =U . 22067720 B; U cp =U ¢, =220 B,
We determine load phase currents

1 =U, /Z, =220e1% /(10+10j)=11-11j =15556e 1*'Ti

lge =U,. /Z, =220e 1'% /(10 +10j) = 15,026 — 4,026 j =

=15,556e 1165 = | \oe IO

lea=U, /Z, =220 /(10+10]) = 4,026 +15,025] =

=15556e ) = 5e 1

*
fL ! Z,
A * Wl —A, a —
/
L, ez
8 = L=
b
*
. e, [A Ifec_za |lea
W, C
Fig. 1.1

We find linear currents on the grounds of the first Kirchhoff's law
La=1,5 —lcy =696-2598j =269 1A
lg=lgc — g =—2598-6,96] =269 1% =] e 1"
le =lca —lge =19,02+19,02j=269e ! =1 e 1A
We determine wattmeter indications
P, = Re{g | A} = Re[220e%" - 26,9¢ 1% 1=220- 26,9 cos45° =1530A0 ;

P, = RG{L_JCB e } = Re[-220e 1'% . 26,9¢ 145 | =

= Re[220e1%%" . 26,9 714" 1=220- 26,9 - cos15° =5730A0 ;

The circuit active power is determined the as algebraic sum of wattmeter
indications, i.e. A

P=P, + P, =1530+5730=7260A0

or

P=+/3-U, -1, -cosgp =~/3-220-269-cos45° = 7260Wt.

The superpose vector diagrams of currents and voltages is given on Fig.1.2.



Im

Fig. 1.2

1.3. The circuit parameters calculation at the load gather in non-
symmetrical Y-connection

Task.

Calculate the parameters of electric circuit for the case of non-symmetric load. In
four-wire three-phase scheme with linear voltage U, =220 V the load
impedances connected by star, the resistive and inductive phases resistance
accordingly are equal

Ra =30Q; X4 =4Q; Rg =3 Xg =5,200; R: =4Q; X: =3Q; (Fig.1.3).

Determine currents in linear and neutral wires and draw vector diagram.

X
=l ~A R:A »
e
g le—my AN o )
L}' IN —

Fig. 1.3
Task solving.

We accept that vector of phase voltage U , is furnished to real axis, then
U, =U, /3 =127 B; U, =1270e "®'B; U =U _, =127¢ "B,



We find the linear currents:

1 o=U,/Z,=127/(4+4])=254"1% A
lg=Ug/Zg —127e 1120° /(3+5,2])) = 2L2€_j1800 A:

Puc. 14

lo=Ug/Ze =127 j(4 +3j) = 254018 A
The current in neutral wire determine as sum
of the phasor phases current

In=la+lg+lc=

= 254715 421 271180 | 5 40 185" —5 ge 124" p\
At non-symmetricly load the active power
find as sum of phase powers

P=U, -l5-cosp,+Ug -1z -CcOS@g +

+Uc - lc -COS@e =

=127-25,4-c0s53% +127-21,2 - cos60° +

+127-25,4-c0s37° =5863,77Wt.

The superpose vector diagrams of currents
and voltages is given on Fig.1.4.

1.4. The circuit parameters calculation at the load gather in non-
symmetrical Y-connection as to three-wire and four-wire schemes

Task. Three-wire circuit.

symmetrical | g |

Three-phase [ >—11

power
supply C
N

o

Fig. 1.5

AN

In three-wire and three-phase scheme with linear voltage U, =380 V the load

impedances connected by star, the resistive, capacitive and inductive phases
resistance accordingly are equal: R=x, =x; =22Q (Fig.1.5). The neutral wire is

absent. Determine currents in the load phases. Draw superpose vector diagram

currents and voltages.



Task solving.
Having chosen phase A as initial, we distribute the phase voltages of the
symmetrical feed source on plane of complex numbers

U, =U, /3% =220e/% v; Uy =220e7 "% =_110-191j V;
U =220 =_110+191j V.

We determine voltage between the neutral points of the feed source and load (the

neutral bias voltage)
220 N -110-191j N -110+191]j

U, _QA'!A"‘QB'!B‘FQC Ye B 22 —j22 j22
=Nn — =

Ya+tYp+Yc i+ l +-i

22 —j22 j22

We determine the voltage on the clamps of the load phases
U pn =U o —U y, = 220602 = —382=382¢ " B;
Ugy =U g —U y, =-110-191j-602=-712-191j = 737,17e &' B;
Ug,=Uc -Uy, =-110+191j-602=-712+191j =737,17e j165° -

We determine phase (linear) currents
—382

=602,V

Ta=Ua-Uy)-Ya =7 :—17,:-’,:]_7’3@]180O A:
lg=Ug-Un) Vs =%=&68—3z,4j =3354e 717 A;
- 22]
le=Uc-Un)Ye =%=8,68+32,4j —3354¢7 A,
j

At non-symmetrical load the active power find as sum of phase
powers
P:UAH . IACOSQ)A‘F

+Ug, - Ig -COS@g +
+Uc, -l -COSpc =
=220-17,3-c0s180° +
+220-3354-c0s195° +

+220-33,54-c0s195° =

=18060,74Wt.

The superpose vector

B | 5 diagrams of currents and
B voltages is given on

Fig.1.6.

Fig. 1.6



Task.
Four-wire circuit.
For the conditions of previous task (Fig. 1.5 three-wire circuit U, =380V,

R=X_ =Xc =22Q), but at closing by the neutral wire points N and n in scheme
(Fig.1.7 four-wire circuit), currents in the phases of load to define.

AN

A 1
Three-phase [ 1

symmetrical | g |

B Xc
power —=———=>—| 5

supply C I X,
— 2 Y Y
7 A INn i a n
Fig. 1.7
Task solving.

We preserve accepted distribution of phase and linear voltages of the three-phase
symmetric power supply. We preserve phase A as initial, distribute of phase
voltages of the symmetrical feed source on plane of complex numbers

U, =U, /3% =220e/ B; U, =220e7 1% =-110-191jB;
U, =220e%" =_110+191jB.

We determine voltage between the neutral points of the feed source and load (the
neutral bias voltage)

220 -110-191j -110+191]

+
U _UnYarUsYe+UcYe 227 -jo 2
= Nn Ya+Yg+Ye+Y g, 1 1 1 Y

- —+ . +—4
22" —j22 j22

Just like was awaited the voltage of bias neutral is equal to zero, i.e. on complex
plane the potentials of points N and n coincide, they are equipotentials.

Voltages on the phases of load are equal to voltages on the phases of the feed
source

U,,=U,-U,, =220-0=220=220e/" v;

Ug, =Ug-U,, =-110-191j—0=-110-191j = 220e %" v
Uc, =Uce -U,, =—110+191j—0=-110+191j = 220e 12" | v,
We determine phase (linear) currents



220 11 12000 A;
22

Ta=UA-Up)Ya

Ilg=Ug-Uy\)Ys :%_leglj=8,68—5j =10e 1% A;
-110+191j

Ilc=Uc-Upnn)Yc= 22]

=8,68+5j=10e" A
Current in neutral wire we find as
Ic lg sum of the phases significances of

phases current
Inn=la+1g+1c=11+868+5]+
Inn Re  +868-5j=2836=2836e" A
Active power is allocated only in the
phase A ohmic resistance
P=R,l2 =22-11% = 2662\.
The superpose vector diagrams of
currents and voltages is given on
Fig. 1.8 Fig.1.8.

1.5. The circuit parameters calculation at the load gather in non-
symmetrical connection and when there are impedances in lines

Will calculate parameters of three-phase circuit at presence line impedances.
Task.

Non-symmetric three-phase circuit comprises symmetrical power supply,
Fig.1.9. Calculation is simplified, if reduce the calculation to determining of the

— o :—E—?
A £d a
Eg 1. Zs Ip|  Zy
g = - =
—— o L F—o F—
* B b 1,
EC — IC ;lc ;c
— — o [ ——o 11—
N -

Fig. 1.9



scheme parameters in that impedances gathered in star. At the load and power
supply connections as star, by the most convenient method of calculation there
is method with determining of the voltage of bias neutral which is found on the
method of node potentials.

Initial conditions for the calculation of parameters non-symmetric three-phase
circuit:

E=380, V; Z|x= Zg=2Z,c=(3+4j), Ohm; Z = (15-8j), Ohm; Z,= (15-8)),
Ohm; Z .= (10+12j), Ohm; Z 4= (10+14), Ohm.

Task solving.
We accept the initial phase of EMF the phase A as initial. In the calculation
symbolic form distribute the phase EMF of the symmetrical feed source on
complex plane

Ex=3800)%,V; Eg =380 1, V; E =380eM, V.
We shall transform the star impedances Z ,, Z,, Z. into equivalent triangle
Zap» Zper Zca (Fig. 10)

Za'Zb _

Zab :Za +Zb +
¢

=15-8j+15-8j+ (15-8))-15-8j)

= (24,795 —33,754) = 41,882 1% 0i ;

10+12j
EA_@ > 1 Zia Zap
A — | Z, —

Isc E
— Ic Zic L,

é C —_—
D

o ®

Lca

Fig. 1.10

Equivalent delta-connected impedances we calculate as to following known
equations

Zye =2y +;C+sz‘lc =

=a

=15-8)+10+12j +

(15-8j)-(10+12j)

: = (35,0 +16,0 j) = 38,483 14 ;
15-8j




;ca:;c"'Za"‘;C ';a =

Zy,

(15-8j)-(10+12j)
15-8]j

We reduce to one equivalent impedance of resistance in the triangle phase AB

Zy-Za  (10+14j)-(24,795-33754j)

Zy+Z, (10+14j)+(24,795-33754j)

= (15,541+9,098) =18,0e1%" 0
We find the branch impedances and conductions of the of the three-phase

equivalent star with allowance for impedances in lines (Fig. 1.11)
Zabd " Zca (15,541+9,098j)-(35+16)
Zp= + Ly = . . —
Zovd +Zpc+Zca (15,541+9,098j)+(35+16j)+(35+16j)
+(3+4j)=(9,371+7,560]) =12,041e 13" 0
Zoo Zabd |7 _ (15541+9,098j)-(35+16) .
T Zuva+Zpe+Zoa - (15541+9,098])+(35+16])+ (35+16])
(3+4j)=(9,371+7,560j) =12,041e 1% O3;
ZooZ.a (35+16j)-(35+16j)

Z,.. =
Zoavd +Zpc +Zca £l (15,541+9,098j)+(35+16j)+(35+16])
+(3+4j)=(17,387+10,212) = 20164e 1%,

=10+12j+15-8j + =(35,0+16,0 j) = 38,483 14 0

Zabd =

IN

N+
0

Y T =
—— ° |_.—o—|:|—
A
E
=B —_— IB ;IB ;b
et Ly
* B b
EC _>IC ZIC ;C
o—(—»} o { —o—{ ——
* C
N A
Fig. 1.11
Yoz tovg=to 1 _0064-0,0497) =008 s;
Za Zg (9,731+756j)
Ye= ! ! =0,0427 - 0,0251j =0,0495¢ 1%’ s:

Z. (17,387+10212))



We find the bias neutral voltage and linear (phase) currents in every equivalent
scheme phase. Calculation we perform on the method of two nodes (the method
of node potentials the particular case) basis
Ea-Ya+Eg-Yg+Ec-Yc
Ya+Yp+Yc
_380e%°.0,081e 5" + 3800712 .0,081e 1% +380e /127" .0,0495¢ 0"
0,081 %" +0,081e %" +0,0495¢ 1%

=16,774-58,649) =60,84e 174 V.

Under the Ohm's law we reckon phase currents (Fig. 1.11) and find fitting
conjugate values

lA = (EA _QNI’]) .XA = (3806100 — 60’84e_j740 ) . 0,081e_j370 _
_ 26,517~ 15157 j = 30,543 1% A,

I A =26517+15157 j = 30,543 10" A,

lg=(Eg—-U ) Yg =(380e 12 _6084e7174").0,081e %" =
—27,467-6,681]j = 28,261e 166" A;

5 =—27,467+6,681] = 28,261e 166" A;

Ie=(Ec-U,,)Yy = (38012 —60,84e717").0,0495¢ 1% =
= 0,943+ 21,838 = 21,859 187" A,

— =%

1. =0,943-21838] = 21,85% & A;
We determine the potentials values on clamps phase impedances and voltage
drops in wires feeding lines (Fig. 1.11)

V,=Ep—2Z5-1,=380e/" —(3+4j) 305437 1% =
=239,82 - 60,597 j =247,357e 11 v;
V,=Eg—Zg-lg=380e"12" _(3+4j).28261e 116 —
=-134,345-199,209 j = 240,276 1% v

V. =Ec-Zc-lc =380 —(3+4j).21,850 & =
= —105,475— 259,805 ] = 280,4¢ 112" v/;

AU =E -V, =380e1" —247,357¢ 114" =

~140,181+ 60,597 j =152,717e1%" v

AUz =Eg -V, =380e" 120" _ 2402766 12" =

— _55,66-129,88j =1413¢ 113" v;



AU,c =E¢ -V =380e1%" _280,4e~1112" —
=—84,525+ 69,284] =109,293¢e j140° V.

We find the phase voltages in every load phase of the equivalent scheme
Uan =V, —Uy,=247,357e M —6084e 174 =223045+1947j =

=223,054¢ 105" v;
U,y =V —U y, =240,276e 112 —60,84e717 =—151119-140,56 j =

=206,383¢ 11" v
Uen =V, —Uy, =2804e "% —60,84e 17 = -122,249 + 318,455 =

=341113 11 v,
We reckon currents through impedances in initial scheme Fig.1.10
u,,-U -jo,5" _ —j137° _
g == =bn _ 22905% 20638% "7 _ 1919713014 =
Zy 10 +14]
= 23,267 1% p;
—1,—14=30543e71%0" _232e71% —732_214j=7,6281 A
+14= 28,2671 1166" | 93 2p134" _ —8,263—-19,695] = 2136e 112" A

=g
= =0,943+213838 = 21,85% 15" A

d termine the potential of the load's neutral point in initial scheme Flg 1.9.
V., =Ec-(Zjc+Z.) 1 =380 _(3+4j10+12])-2185% ¥ =

=147159+ 30,114 ~150,4¢ 11" V.
We calculate the active powers of symmetrical three-phase power supply and
non-symmetric load

* *

P, :Re{gA A a+Ez-15+Eg- IN}:Re[380ejOO .30,543e 13" 4

+380e 120" . 2826130 11%%" 1 380 112" . 21,850¢ 187" 1= 2,45-10° W;
R=R -(I+153+18)+Ry - 15+R, - 12+R, - 12 +R, - 12 =
~3.(30,543% + 28,2612 + 21,8597 )+10- 23,22 +

+15-7,628% +10- 21,859 = 2,45-10° Wt.

Relative error for engineering calculations should not exceed 5% and for

carried out calculations composes value

y=(P,—R)/P -100%=0%

We draw on scale currents vector diagram and topographic voltages diagram,
Fig.1.12. Topographic diagram illustrates voltages distribution between various
points of the three-phase circuit. Drawing begins from the choice of convenient
voltages and currents scale and dispositions of the power supply N neutral point



on complex plane. As a rule, this point situate of at the coordinates origin, i.e.
the potential the N point of the feed source is accepted to equal zero. Relatively
this point are postponed the phase and the linear voltages of the symmetrical
feed source. In drawing take into account, that linear voltages are determined
through fitting of phase voltages. Subtracting from the points potentials vales of
the built equilateral the triangle voltage apices of the symmetrical feed source
the voltage drops on line impedances, we shall receive the point potentials
which determine the potentials of the apices of linear voltages scalene triangle
on load. From the onset of coordinates (point N) postpone the bias neutral
vector between neutral points, i.e. find the potential of point n on load which is
connected as star. Having connected point n with the apices of linear voltages
scalene triangle we shall receive phase voltages vectors in the elements
connection initial scheme. The current vectors suitably and visually to postpone
from the neutral point of n load.

Decompose the line currents system into symmetrical components of zero,
positive and negative phase-sequences. Zero phase-sequences is absent, because
in connection by star without neutral wire is fulfiled condition | ,+1z+1.=0,
I.e.

Cla+lg+lc 305437130 428261011 4 21850 187

= =0;.
LN 3 3

Igo =1co =0

We distinguish positive currents phase-sequence
ly+alg+a’lc

'm = 3 =

30,543e 7% 11.e112" .28 26171166 4 1.1240" . 21 850¢ 187
3
=21,491-15778] = 26,661 1% A;

lg =a’l , =1-e1%0 . 26,6610 715" =26,661e 1204 A;

log=al g =1-e1% . 26661e71% =26,661e 1% A

The negative currents phase-sequence

» :|_A+a2|_B +ale _

- 3

30,543e7 130" 41.¢1%0° .28 2617 166" 1 1.¢1120" . 21 850 87
3

=5,026+0,62 ] —5,064ei” A:
lg, =al =1 g 120° -5,064ej70 =5,064ej127° A
lop =82l =1-81%0" 5064817’ =5064¢1247° A



Fig. 1.12

Graphic currents decomposition on positive (Fig. 1.13) and negative (Fig. 1.14)
phase-sequences consists in drawing of current vectors and their sums
according to known analytic expressions.

On complex plane postpone current vector | 5, by the end of this vector add

vector 1 5, which turn on corner 120°, to the last vector add vector | ., which

turn on corner 240°. We connect the onset of the first vector with end of last
and received vector divide by three equal parts. Found one third there is current
vector of the phase A positive phase-sequence. The current phase B vector of

the positsve phase-sequence advance on 240° phase A current vector of the

positive phase-sequence, and in phase C lags behind on 120° phase A current
vector of the positive phase-sequence,
Similarly is built the current vectors system for negative phase-sequence.
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1.6. The personal computative-graphic task “The calculation
parameters of three-phase circuit at harmonic voltages and
currents”

Calculation non-symmetrical three-phase circuit.

On Fig.1.15 is given non-symmetric three-phase scheme with symmetrical phase
electromotive forces (EMF). Numeral significances of EMF, of line phasor
impedances and load are given in Table 1.1. The three-phase inner impedances

neglect.
EA_Q > 14 Z Zab
—_— O
A




For given circuit Figl.15 it is necessary do following calculations:

1. Determine currents and voltages on all circuit districts.
2. Compose power balances.

3. Build in scale currents vector diagram and the topographic diagram of
potentials.
4. Decompose received linear currents system on symmetrical phase-
sequences by analytically and graphically.

Table 1.1.
Variant | E,V | ZiaQ | Z1g,Q | Zic,Q | Zgp,Q | Zpe, Q| ZLa, Q2
01 660 1 0 0 | 10+10] | 10+15] | 10-10j
02 380 0 1 0 | 10-10j | 10+10j | 10+15f
03 220 0 0 1| 10+15] | 10-10j | 10+10j
04 127 1] 0 0 1045] | 10+15] | 10-10j
05 660 0 1] 0 | 10-10j | 10+5j | 10+15f
06 380 0 0 1j | 10+15] | 10-10] | 10+5f
07 220 1] 0 0 | 20+10j | 10+15] | 10-10j
08 127 0 1] 0 | 10-10j | 20+10j | 10+15f
09 660 0 0 1] | 10+15] | 10-10j | 20+10j
10 380 2 0 0 20+5j 10+15j 10-10j
11 220 0 2 0 | 10-10j | 20+5j | 10+15f
12 127 0 0 2 | 10+15) | 10-10] | 20+5]
13 660 i 0 0 | 10-10j | 10+15] | 10-10j
14 380 0 2i 0 | 10-10j | 10-10j | 10+15f
15 220 0 0 2i | 10+15j | 10-10j | 10-10j
16 127 2] 0 0 10-5) | 10+15) | 10-10j
17 660 0 2] 0 | 10-10] | 10-5] | 10+15]
18 380 0 0 2] | 10+15] | 10-10] | 10-5;
19 220 | 1+2] 0 0 | 20-10j | 10+15) | 10-10j
20 127 0 1+2] 0 | 10-10j | 20-10j | 10+15]
21 660 0 0 1+2] | 10+15] | 10-10j | 20-10j
22 380 | 1+1j 0 0 20-5, | 10+15] | 10-10j
23 220 0 1+1] 0 | 10-10] | 20-5] | 10+15]
24 127 0 0 1+1) | 10+15] | 10-10] | 20-5]
25 660 | 1-1j 0 0 | 10+10j | 10+15) | 10-10j
26 380 0 1-1] 0 | 10-10j | 10+10j | 10+15f
27 220 0 0 1-1] | 10+15] | 10-10j | 10+10j
28 127 | 2+]] 0 0 10+5] | 10+15j | 10-10j
29 660 0 2+1] 0 | 10-10] | 10+5] | 10+15f
30 380 0 0 2+1] | 10+15] | 10-10] | 10+5]
31 220 | 2+2] 0 0 | 20+10j | 10+15) | 10-10j




Continuation of Table 1.1.

Variant | E,V ZipQQ | Zig, Q2 | Z1c,Q | L Q| Zpe, Q| Z,, Q2
32 127 0 2+42] 0 10-10] | 20+10j | 10+15]
33 660 0 0 2+2] | 10+15) | 10-10j | 20+10j
34 380 1-2) 0 0 20+5] | 10+15] | 10-10j
35 220 0 12§ 0 10-10] | 20+5j | 10+15]
36 127 0 0 1-2] | 10+15j | 10-10j | 20+5f
37 660 22 0 0 10-10j | 10+15j | 10-10j
38 380 0 22 0 10-10] | 10-10j | 10+15]
39 220 0 0 2-2f | 10+15j | 10-10j | 10-10j
40 127 0 15 0 10-5) | 10+15j | 10-10j
41 660 1 0 0 | 10+15) | 10-10] | 20-10j
42 380 0 1 0 20-5) | 10+15j | 10-10j
43 220 0 0 1 10-10] | 20-5] | 10+15j
44 127 1 0 0 | 10+15] | 10-10] | 20-5j
45 660 0 1 0 | 10+10j | 10+15) | 10-10j
46 380 0 0 1j | 10-10j | 10+10j | 10+15f
47 220 KT 0 0 | 10+15j | 10-10j | 10+10j
48 127 0 KT 0 10+5) | 10+15] | 10-10j
49 660 0 0 1j | 10-10] | 10+5] | 10+15]
50 380 2 0 0 | 10+15j | 10-10j | 10+5j
51 220 0 2 0 | 20+10j | 10+15] | 10-10j
52 127 0 0 2 10-10] | 20+10j | 10+15]
53 660 ] 0 0 | 10+15j | 10-10j | 20+10j
54 380 0 2] 0 20+5] | 10+15) | 10-10j
55 220 0 0 2i | 10-10] | 20+5] | 10+15]
56 127 2 0 0 | 10+15] | 10-10j | 20+5j
57 660 0 2 0 10-10j | 10+15j | 10-10j
58 380 0 0 2j | 10-10j | 10-10j | 10+15]
59 220 | 1+2j 0 0 | 10+15j | 10-10j | 10-10j
60 127 0 142] 0 10-5) | 10+15j | 10-10j
61 660 0 0 1+42] | 10+10j | 10+15) | 10-10j
62 380 | 1+1j 0 0 10-10 | 10+10j | 10+15j
63 220 0 1+1] 0 | 10+15j | 10-10j | 10+10j
64 127 0 0 1+¢1j | 10+5j | 10+15) | 10-10j
65 660 11 0 0 10-10] | 10+5] | 10+15j
66 380 0 1-1] 0 | 10+15] | 10-10j | 10+5j
67 220 0 0 1-1j | 20+10j | 10+15)] | 10-10j
68 127 | 241 0 0 10-10j | 20+10j | 10+15]
69 660 0 2+1] 0 | 10+15] | 10-10j | 20+10j
70 380 0 0 2+1j | 20+5] | 10+15j | 10-10j




Continuation of Table 1.1.

Variant | E,V ZipQQ | Zig, Q2 | Z1c,Q | L Q| Zpe, Q| Z,, Q2
71 220 | 2+2] 0 0 10-10] | 20+5] | 10+15]
72 127 0 2+2] 0 | 10+15] | 10-10] | 20+5j
73 660 0 0 2+2j | 10-10j | 10+15] | 10-10j
74 380 1-2] 0 0 10-10] | 10-10j | 10+15]
75 220 0 12§ 0 | 10+15j | 10-10j | 10-10j
76 127 0 0 12j | 10-5] | 10+15] | 10-10j
77 660 22 0 0 10-10) | 105 | 10+15]
78 380 0 2-2) 0 | 10+15j | 10-10] | 10-5j
79 220 0 0 2-2] | 20-10j | 10+15j | 10-10j
80 127 0 15 0 10-10] | 20-10j | 10+15j
81 660 1 0 0 | 20+10j | 10+15] | 10-10j
82 380 0 1 0 10-10j | 20+10j | 10+15j
83 220 0 0 1 | 10+15] | 10-10] | 20+10j
84 127 1 0 0 20+5] | 10+15] | 10-10j
85 660 0 1 0 10-10] | 20+5] | 10+15]
86 380 0 0 1j | 10+15] | 10-10j | 20+5j
87 220 1 0 0 10-10j | 10+15j | 10-10j
88 127 0 KT 0 10-10] | 10-10j | 10+15]
89 660 0 0 1j | 10+15j | 10-10] | 10-10j
90 380 2 0 0 10-5) | 10+15j | 10-10j
o1 220 0 2 0 | 10+10j | 10+15] | 10-10]
92 127 0 0 2 10-10j | 10+10j | 10+15]
03 660 ] 0 0 | 10+15j | 10-10j | 10+10j
94 380 0 ] 0 10+5] | 10+15] | 10-10j
95 220 0 0 2i | 10-10] | 10+5j | 10+15f
96 127 2 0 0 | 10+15] | 10-10j | 10+5j
97 660 0 2 0 | 20+10j | 10+15] | 10-10j
08 380 0 0 2j | 10-10j | 20+10j | 10+15]
99 220 | 1+2j 0 0 | 10+15] | 10-10j | 20+10j
100 127 0 1+42] 0 20+5] | 10+15j | 10-10j

1.7. Questions for one's own checking as to the calculation methods
of three-phase harmonic circuits

1. Symmetrical three-phase load there is connected into triangle, and included into
three-phase network with voltage U, =220 V. Find linear current at the load phase

resistance Rp=11 Ohm.




2. Symmetrical three-phase load there is connected in star, and included into three-
phase network with voltage U, =220 V. find linear current at the load phase

resistance Rp=11 Ohm.

3. Ammeter Al included in the circuit of symmetrical three-phase load, indication
current value 34.6 A. What value current will show ammeter A2?

as—(a) (k)

Z

o
4. System of sinusoidal linear voltages is symmetrical. Find the indications of
ammeter, if the known circuit parameters U, =127 V, R, =Z =10 Ohm.

5. The phase resistance of symmetrical three-phase load R, =Z =10 Ohm. What
will voltmeter indication if ammeter indicated 17.3 A?

B =
S

6. In the circuit the linear voltages are sinusoidal and U, =380 V. All resistance

(6 ones) are similar and equal to Rp =Z =20 Ohm each. Find ammeter A

indication.

r ()

B=

Ce

7. Phase currents of symmetrical three-phase load are equal to 15 A each. What
will become current Ica after blowing of fuse in wire of phase A?




8. Into how many times will change value of active power, if symmetrical load,
gathered by star without neutral wire, reconnect into triangle at unchanged linear
voltage?

9. The phases resistance of the of couple symmetrical three-phase loads are
equivalents. The first load is connected into triangle, second one into star, while of
both loads are connected to common network. Find the relation of linear current of
the first load to linear current of second load.

10. Symmetrical three-phase load which gathered by triangle, has only ohmic
resistance in phase R; = Z , =15 Ohm. Second symmetrical load is gathered by star

and connected into same three-phase network. What ohmic phase resistance of
second load R, =Z, if we known, what of linear currents of both wirelesses are
equal?

11. Symmetrical three-phase load which gathered by star, has only ohmic
resistance in phase R; = Z, =9 Ohm. Second symmetrical load is gathered by

triangle and connected into same three-phase network. What ohmic phase
resistance of second load R, =Z,, if we known, what of linear currents of both

wirelesses are equal?

12. Symmetrical three-phase load there is connected into triangle, and included
into three-phase network with voltage U, =127 V. Find linear current at the load
phase resistance Rp=15 Ohm when wire break in A line.

13. Given linear voltage Up =127 V of three-phase network and the ohmic

resistance of 15 Ohm symmetrical three-phase load. Find current in wire A after
blowing of fuse in wire of phase C.

A Ia Ib*l_l 7
B = |' %Z
C o I = — Fd

14. Phase currents of symmetrical three-phase load equals to 12 A. What will be
current in line C after blowing of fuse in wire of phase A?

15. Three-phase network feeding symmetrical load has linear voltage U, =127 V.

What will voltmeter indicated which included into phase CA after blowing of fuse
in wire of phase C?




16. Into how many times will change value of line current, if symmetrical load,
gathered by star with neutral wire, reconnect into triangle at unchanged linear
voltage?

17. How change phase current in symmetrical load, by gathered as star with neutral
wire when wire break in A line.? Load is connected to the symmetrical system of
voltage source.

U
B

ih_.
C ICT- Fi
0 0——H

18. Given linear voltage U, =380 V of three-phase network which is connected to

symmetrical three-phase load. What will be voltage in phase B, if in phase C
impedance there is short circuit.

19. What will voltmeter indicate which included in the scheme of symmetrical
three-phase load, if linear voltage of feeding networks is equal U, =220 V, and

linear wire break in phase B?

20. Phase currents of symmetrical three-phase load are equal 18 A. What will
become current 1, after blowing of fuse in wire B?

21. Three-phase circuit worked in symmetrical regime. Load is connected by star
without null wire. After wire break in phase A necessary to determine modulus of
voltages Ug and U

22. How to change linear currents 15 and I of symmetrical star without neutral

wire, if in phase A load is short circuit? Linear current in symmetrical load before
closing switch S was equal to value 1=5 A.

A S

B
C



23. Three-phase circuit worked at symmetrical regime. Load is connected by star
without null wire. Find voltage modulus in phases B and C (Ug and U ) after
short circuit in phase A.

24. Symmetrical three-phase load there is connected into triangle, and included
into three-phase network with voltage U, =220 V. Find linear current at the load

phase resistance Rp=11 Ohm after loss of phase B.

A R
B R
C R

25. Into how many times will change value of active power, if symmetrical load,
gathered by triangle, reconnect into star at unchanged linear voltage?

26. Symmetrical three-phase load there is connected into triangle, and included
into three-phase network with voltage U, =220 V. Find consumed active, reactive

and apparent powers at the load phase resistance Zp, =10+ j10Ohm.

27. Symmetrical three-phase load there is connected into star, and included into
three-phase network with voltage U =220 V. Find consumed active, reactive and

apparent powers at the load phase impedance Zp =10— j10 Ohm.

AE Ialb+l I ;:j—| Z
B= I I ——] 7
Co—C = o] Z

28. Symmetrical three-phase load is gathered from ideal inductance elements as
triangle which connected to three-phase circuit by voltage U, =220 V. Find

consumed active, reactive and apparent powers, if current in line B is 5 A.

A L

L
B L
[

29. Symmetrical three-phase load is gathered from ideal capacitance elements as
triangle which connected to three-phase circuit by voltage U, =380 V. Find

consumed active, reactive and apparent powers, if current in line C is 2 A.

30. Symmetrical three-phase load is gathered from ideal omhic resistance
elements as triangle which connected to three-phase circuit by voltage U, =220

V. Find consumed active, reactive and apparent powers, if current in line B is 5
A.
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2. THE CALCULATION METHODS OF ELECTRIC SINGLE-
PHASE AND THREE-PHASE CIRCUITS WITHIN NON-
HARMONIC VOLTAGES AND CURRENTS

2.1. Study guides as to the calculation of single-phase non-harmonic
circuits

1. Non-harmonic currents i(wt) and voltages u(wt), or in generally case function
f (at), are periodical carvers form of which are not sinusoidal. Periodical function
f (at) = T (ak + 277) satisfying to Dirichlet conditions, maybe presented in the form
of the sum endless trigonometrically (harmonically) of Fourier series

f(at) = Ag + 3 Ay sin(keot + 17, ),
k=1

where A, is constant component; x is harmonic number (order); A, is x-th

harmonic amplitude; | is x-th harmonic initial phase.

In this case non-sinusoidal periodical function is considered as a result of the
superposition of sinusoids with aliquot frequencies: @, =Ko, where @=27/T is

main (or first) harmonic frequency.

Each harmonic has its own initial phase and amplitude.

Trigonometrically row can be writed down through sinusoidal and co-sinusoidal
components, each of which has null initial phase

f(t) = Ay + 3 By sin(kat) + 3.Cyy cOS(Kaot)
k=1 k=1

and A%m = B%m +C%m tgy, =Cyn/ B,yat that.

In its turn can be determined that B, = A, cosy u Cy,, = Ay SINy, .
Coefficients Ay, By, Cymy are determined through initial function fi(wt) by means
of integrals Fourier

2 2
A, :i [ f(wt)dat; B, :i [ f(et)-sinkat - dat;
27 27 0

2z
Cum - [ f(wt) - coskat - dat.
27 0

2. Periodic non-sinusoidal function can be characterized by discrete frequency the
spectra of harmonic amplitudes A,,(w) and initial phases w,(w) which

accordingly are called amplitude-frequency and phase-frequency.



Spectral composition determines the form of complex harmonic vibration. Two
non-sinusoidal vibrations have similar form only in similar amplitude-frequency
and phase-frequency spectra.

3. Determining of spectral composition no-sinusoidal periodical current or voltage
can be essential simplified, if preliminary to establish the disposition of the non-
sinusoidal periodical curve symmetry relatively coordinate axes.

If the non-harmonic periodical curve symmetrical of coordinates onset, then such
curve is odd f(at)=—f(—at) and Fourier series does not comprise null and

cosines composing
f(ot) = 3 By, sin(kat).
k=1

If the non-harmonic periodical curve symmetrical of ordinate axe, then such curve
iseven f(at) = f(—at) and Fourier series does not comprise sines composing

f(at) = Ag + 3.Cyy cOS(Kat).
k=1

If the non-harmonic periodical curve symmetrical of time axis (abscissa), then for
such curve it's true f (at) =—f (—at + ) and Fourier series does not comprise null

and even composing

fla)= SAmsin(kat+p )= SBesin(kat)+ Cpnsin(kat).
k=1,3,5... k=13,5... k=1,3,5...

There are possible cases, when investigated curve owns the several types of
symmetry. If curve symmetrical relatively coordinates onset and abscissas axis,
then Fourier series is simplified till form

f(at)= 3 By,sin(kat).
k=1,3,5...

At the symmetry relatively of y-axises and abscissas, Fourier series changes till
form

f(at)= 3 Cppsin(kat).
k=1,3,5...

4. If non-sinusoidal function is described analytical, then determining of its
spectral composition is performed by means of the search of amplitudes and initial
phases harmonic by means of Fourier formulae.

If there is absent the analytic description of investigated periodical non-sinusoidal
function, then in this instance the parameters of harmonic Fourier series possibly to
calculate by means of graphic-analytical method. The graphic-analytical method is
founded on the replacement of definite integral by the sum of finite number of
summands. The constant component and amplitudes sin and cosune components of
series detect out from correlations

10 2 0 : 2 0
Ay :HpZ:lfp(x);Bkm:szﬂfp(x)sm o (k); ckm=ﬁglfp(X)cosp(kx),

where x — running coordinate; n — partitioning number on the repetition period ; p —
current index accepting significances from 1 till n; f,(x) - the significance of



harmonic function at current phase x=p-2z/n; sin,(kx), cos,(kx) - the

significance of function sin(kx) and cos(kx) at current co-ordinate x=p -2z /n.

In calculations follows to take into account that omhic resistance accords the
identical resistance for all voltage harmonic components R, =constant).

Inductive resistance enlarges with the growth of harmonic number x,, =kal,
capacitive resistance decreases with growth of harmonic number xg, =1/(kaC).

5. For the every calculation be performed by the known methods of circuits single-
phase harmonic currents calculation, by namely symbolic method. For every
harmonic component taken separately, possibly draw current vector diagram and
combined with it vector voltage diagram.

6. At presence higher harmonics in voltage and current curves and heterogeneous
reactive elements in circuits are possible resonance phenomena on separate
harmonics. If voltage and current on k-th harmonic coincides as to phase, then on
this harmonic is seen the voltage resonance in the series connection of
heterogeneous reactive elements, in their parallel connection is seen the currents
resonance.

7. Voltage (or current) effective value at presence higher harmonics is determined
as root square from the sum of squares null component and effective values of
harmonic components

U= U2+ 3UZ 1= 12+ 312,
k=1 k=1

8. Coefficients characterizing form of non-sinusoidal periodic curves.
For the characteristic of the periodical curves form are introduced the coefficients
of amplitude K,, forms K, distortions Ky, of harmonics K, and pulsations

Kp.
The amplitude coefficient K, is determined as quotient of maximal value to it
effective value

A
KA: m

A+ S A
k=1

For the harmonic function the amplitude coefficient K, = V2 =141
The form coefficient K¢ there is the quotient of effective value to middle A,,, for
the half of period ones
Ke =2
Amd
For the harmonic function the form coefficient Kg =111.
The distortion coefficient K is determined as quotient of effective value main
harmonic component to it effective value




Kp=—

J%+§¥.
k=1

For harmonic function the distortion coefficient Ky =1,0.

The harmonic coefficient obtain as quotient of non-sinusoidal effective value not
counting zero and the first harmonic to acting value of the first harmonic

A
K, = k=2

A
For sinusoidal value the harmonic coefficient is not determined.
The pulsations coefficient is determined as quotient of non-sinusoidal effective
value not counting zero and the first harmonic to effective value of the first
harmonic

|3 A2
Kp=-Kk2__

A
For sinusoidal value the harmonic coefficient is not determined.
9. The circuit power at alternating current of arbitrary form is determined as
middle power for period or in symmetrical curve form for the period half.
Active power in non-harmonic currents and voltages is equal to the sum of powers
of separate harmonics

PZUOIO + ZUklk COS(Dk .
k=1

Reactive power in non-harmonic currents and voltages is equal to the sum of
powers of separate harmonics

Q:kz“luklk Sin(Dk .

The apparent power at presence high harmonics define through effective values of
non-harmonic voltage and current

S =Ul :\/u2 + ﬁuf\/lg ST :\/(ug + iuf)(lg + flfj
k=1 k=1 k=1 k=1

This power turns out to be more, than definite through values of active and reactive
powers component

S >\/(u§ T iufj(lg b %lfj - /P21 0Q?.
k=1 k=1
This equality is fulfiled only in circuits in which the form non-sinusoidal currents

and voltages completely identical.
The value

T=\/SZ—P2—Q2




is called as the distortion power. Quotient T/S characterizes the distinguishing
degree in the forms of curves current and voltage.

2.2. Study guides as to the calculation of three-phase non-harmonic
circuits

1. If in three-phase circuit acts symmetrical three-phase non-sinusoidal supply
power, then in this case EMF have similar form and shift in time on the one third
period of repetition

ep= 3 Epsinkot: eg = 3 Ey sink(ot — 27/3);ec = 3 Eyr sink(at + 27 /3).
k=1 k=1 k=1

The harmonic components with numbers x=1,4,7,10 and so on will form
symmetrical systems of positive sequence.

The harmonic components with numbers x=2,5,8,11 and so on will form
symmetrical systems of negative sequence.

The harmonic components with numbers ¥=3,6,9,12 and so on (this rapmonuku
aliguot three) will form symmetrical systems of zero sequence.

Peculiarity aliguot three harmonic components is that they coincide as to phase.
This circumstance brings to the peculiarities of the three-fase circuits work in
presence high harmonic components, that there is necessary to take into account in
calculation.

2. At the connection of the three-phase power supply clamps by triangle in the
regime of open circuit in windings flow current, conditional third and aliquot three
harmonic components. The effective value of such current is determined as

(o6}
= YIZ.
k=3,6,9,...

3. At the connection of the clamps of three-phase power supply by open triangle
that in the point of triangle discontinuity acts voltage

u= > 3E,sink(at +y, ). The effective value of such voltage is determined as
k=3,6,9,...

u=3| SUZ.
k=3,6,9,...

4. In linear voltage irrespective of the clamps connection scheme of power supply
are absent harmonic components aliquot three.
At connection by star:

- phase voltage effective value Up = | SUPZ .
k=1,3,5,7,9,...

- line voltage effective value U, =~/3.| SUZ.
k=L5.7..

- the quotient of linear volage to phase one



| 2Ug
UL_\/§ k=157,... <3

Up B 12
22Uy
k=1,3,5,7,9,...
At connection by triangle voltage component, due to harmonic components aliquot
three, neither will appear between the phase clamps, because will be recompensed

the voltage drop on inner phase impedances. If the current in the triangle side

Y17, that into
k=1,3,5,6,7,9,...

exterior (linear) wire the current will not comprise harmonic components, aliquot
three I, =~/3.| IZ2.
k=1,5,7,...
5. At the connection of power supply and symmetrical charge by star and
absence neutral wire the linear current will not comprise harmonic components,

aliquot three, i.e. 1, = | SIZ.
k=157,...

Between the null points of power supply and load acts the voltage

UNn=/ SUZ.
k=3,6,9,...

2.2 The circuit parameters calculation of single-phase non-harmonic
at resistance-capacitance in scheme

comprises harmonic components, aliquot three |, =

— i(wt)

g Task.
To electric circuit, scheme which is presented on Fig. 2.1,
C is applied non-sinusoidal periodically voltage
u(at) = 68,8sin et + 7,64sin 3at + 2,75sin(5at —180°),V.
u(wt) 1
Scheme parameters R=5 ohm, X¢ :5:15 ohm.
Determine instantaneous current value in circuit, effectiv
R value of one and the circuit's power factor.
s Task solving.
We determine of impedance for each of harmonic
Fig. 2.1 components:
-for the first harmonic component

Z,=R- jx. =5— j15=1581e 1" (;
- for the third harmonic component Z; =R — jxc =5—j5= 7,07e‘j45°Q;



- for the fifth harmonic component Z; =R — jx. =5— j3=583" ')
We reckon amplitude of current harmonic components phasor values:

- the first current harmonic component |, = & =435 1™ A;
158117
| _ 7,64 (45"
- the third current harmonic component | ;,, = ————=108e"'™ A
7,077 1%
—j180° o
- the fifth current harmonic component | = 275e— =0,471e 149 A
5,83¢ 1%

Instantaneous current value:
i(at) = 4,35sin(at + 71°) +1,08sin(3at + 45°) + 0,471sin(5at —149°), A
The circuit active power

P=U,l, +k§1Uk|k cos g, = 208 430 oc710
104108 g0 , 275047 o310 5210wt
The circuit reactive power
Q= SU,I, sin o, _ 988435 710 4

k=1 2
4 1,64-108 o pg0 | 275-0471 4 210 —144,73var.

Effective values of non-sinusoidal voltage and current

=~ 2 2 2
U /ug . 2uz :\/68,8 L1647 2758 o
k=1 2 2 2
1= 124+ 3512 =L 4357 41087 +0,4712 =318A
k=1 A2

The circuit apparent power
S =Ul =49-318=155_82VA.

The distortion power
T =452 - P2 -Q2 =/155822 —52,19% —144,732 = 24,68 var.

The circuit's power factor

P 5219

_P_221 433
=5 T 15582




2.3. The single-phase non-harmonic circuit parameters calculation
at series connection resistance-inductance-capacitance in scheme

Task.
R Determine current in series circuit, Fig.2.2, which has

— _L parameters R=10 ohm, L=0,05 H C=22,5-10"° F.
C The which applied to the scheme clamps is non-

o sinusoidally
o ~N u(at) =180sin at + 60sin 3at + 40sin(bat +0,1- 7),V .
L Angular frequency of main harmonic o =314rad/s.
Fig.2.2 Task solving.

We determine the circuit impedance and the phase drift corners for every harmonic
component:
- the first harmonic component

Z,=[R? +(al -V )? :J102 +@14-005- 1 o

314.0,05— %
ol — ' —6

- the third harmonic component
Z,=|R? + (3ol — 2 = 10% +(3-314-0,05—
2= R+ G- 2 0) J + 3.314.225-10

3-314-0,05-
3ol — ’ . _ 10-6
tgep; = %a)%: 3-314-225-10 420;% _o°

- the fifth harmonic component
Z: = |R? + (50l — = [10% +(5-314-0,05-
s = R*+ Gl —JE ) \/ + 5.314.22,5.10°°

5.314- 0,05
Sol — ’ . _ 10-6
tgps = %a)% _ 5.314.22,5-10 4 5029 = 787"

We reckon amplitudes of every current harmonic components

I]_I - 1/21_ 426 1’ ’IS 3/23 40 ,
U m 4 =0.78A
|5 5/5 _ y ,2 = O, 8A.

The effective value current in circuit

I E N I 1 2 . .2 2
=yt o :ﬁ‘/1’43 16240782 =6,2A

Instantaneous current value:
i(ot) = iy (@t) + ig (3at) + i (5et) =1,43sin(t —85,3°) +

+16sin(3awt) + 0,78sin(5at + 78,7°), A

)2 =126 ;

5)2 =100 ;

) =512I1 ;




There is necessary to notice that for third harmonic component is seen the voltage
resonance. The impedance for third harmonic component is equal to ohmic
resistance of circuit. Third harmonic component has essential specific weight in
current curve, than in voltage curve. The correlation of amplitudes third to the first
harmonic components

Ysm =ﬂ=o,33; '?’—m=—=4,2.
U, 180 I, 143

2.4. The single-phase non-harmonic circuit parameters calculation
at mixed connection of resistive-inductive-capacitive resistance in
scheme

Task.
P a Given the scheme parameters on main
harmonic component (Fig. 2.3) R=4 ohm,

'1<T> X, =l =3 ohm, x¢ =£=12 ohm.

izl C-- C\D Into circuit included two sources of energy
supplies: non-sinusoidal one

A > ,J‘ e(at) =4+ 34sin ot +12sin(2wt + %),V
b

and direction one e, (at) =12V .

Determine instantaneous current values in
circuit branches and reading of an

Fig. 2.3

electromagnetic system devices.

Task solving.

The calculation we perform by the superposition method from action every EMF
harmonic component with symbolic method using.

For the EMF direct components current value

€ — € 4-12

We shall determine branches current from action the first EMF harmonic
component. The circuit input impedance for the first harmonic component

lip =1y =

XL = Xe j3- 112
The phaser current amplitude value in circuit unbranched part
E 450
Loy ==t = 34- ~=6e 1% A
Z, 566el*”

The instantaneous current value in circuit unbranched part



iy (at) = Bsin(at —45°), A
The current of second branch

1
_Ji o »
I :lmll—wcl:Ge_HS %_12:89_]45 A;
joL —j—— J
oC

i, (ct) =8sin(at —45°), A
The current in third branch
Pz = i S S 6e 1% _—13 =-2e7 1% A
jol — ji —J
aC
i5y (k) = —2sin(at — 45°), A
For the second harmonic component circuit impedance and current

NEN
Z,=R+ = =4 +o00=00,Q;

4 +
- ) . .12
ZJXL—J—C 2]3—]E
E
Imo1 = Zmz :EZOA
£ 0

The current in circuit unbranched part iy, (2at) =0, A.
As to second harmonic component in circuit is seen current resonance
Current in branches from second harmonic component
Emp 126", jro .
Zy 2j3

i, (20t) = 2sin(2at — 70°), A
En :12ej20 _ 9 i110° A
Zy, 12

2

i5, (200) = 25in(200t +110°), A
Note: the first index shows the number of district, and second shows the harmonic

lm22 =

ITm32 =

component number.
We find the electromagnetic system's gage readings (non-sinusoidal currents and

voltages effective values). The electromagnetic system ammeter indications

12, +12 2 40°
|=\/|§+—"‘11 2 =\/22+6 2+O —47A
The electromagnetic system voltmeter indications
_ 2 2 2 _ [192 2 2 _ ook
U= U2, +U2, +U2, =122 +17% +851% = 225;
Uano =€, =12V,




6 Enp 12
b =E4=17v; Uao = 115200 :%:Ezsmv.

The instantaneous current value in the circuit branches
Current in circuit unbranched part

iy () =iy +iyy +ipp =—2+6sin(at —45°) +0, A

Current in second branch

iy () =ling + iy +iny =—2+8sin(at —45°) + 2sin(2et — 70%), A
Third branch current

ig (k) =igy + gy + i3y =—2 —2sin(ewt —45°) + 2sin(2at +110°), A

U abl — Illz

2.5. The three-phase non-harmonic circuit parameters calculation at
the load gather in symmetrical delta-connection

Task.
In three-phase circuit there is non-harmonic EMFs symmetrical system (Fig.2.4).
The EMF in B phase of three-phase symmetrical non-harmonic source is known

egy (@t) = 60+/2 sin(wt + %) + 45+/2 sin(3at) + 30+/2 sin(5et — 30°),V.

Impedances in the load phases on frequency of the first harmonic component is
known Z 4 =7y =Zc =150hm.

Determine the electromagnetic system's gage readings (non-sinusoidal currents and
voltages effective values).

Task solving.

The voltmeter indicate linear voltage effective value from the first and fifth
harmonic components, because third harmonic components will form voltage zero
sequence in three-phase source

U ags =U ps ~U s =0:

U, =+3yJUp3 —U3, =+/3V60% —30% =116V.



Fig. 2.4

The ammeter indications

| =13 + 13513 =0,
U ag1

where |y =1 ag; —leas Tas =1 ags —Lens: |_A|31:Z y lem = ;
AN

N U ags . - Ucas

TABS =1 LA T :

£ a5 Lcas

First of all we shall determine the phasor linear voltages for the

component in given phase EMF
egn1 = Ugny =602 sin(at + %),V; Upgni = 60e1%";

U s =U grie 12 =606 1% ¢ 120" _ 60g 150" -

Ucn :L_JAme_j1200 =60e 13" 120" — gpg I’ V;

U pgz =Y ang —U gy = V3U pnge /3 =3 600150 1% =
—/3.60e1 = _/3.60,V;

Ucm =Uena —Yan = \/§L_Jc|\|1ej300 =/3-60e 1930 =
=/3-60e 7157 v,

We calculate linear voltage value for fifth harmonic component:
eans =Upns =30v2sin(5at —30°),V; U gys =307 1%

U sy =U gree 2" =300 1%°e 1120 _ gog 110" .

U cns =U gee /20 =308 130 ¢ 120" _ 306 190" v/

U ags =U ans —Ugns :\/gL_JANse_BOO —/3.30e 10 30" _
—/3.30e71%8" —_/3.30,V;

first harmonic



—j3o° j90° . —j30°
QCASZL_JCNl_QAle\/éQCNSGJ =+/3-30e /% e 1% =

—/3-30e%0" v,
The phase currents of first harmonic component:

U —J3- 1000
[ 3 60=—4x/§=4x/§ejmo A

Z pp1 15
U — J/3.60e1%

lem = ZCAl = T =4./3e 13 A
£Lca —J

The line currents of first harmonic component:
Upg =1 ap — Lo =443 —4/3e1% =892 j346=956e 1% A
The phase currents of fifth harmonic component:

_Ypes _ _\/§'30:—2\/§:2\/§ej1800,A;

ZABS 15
U —J3-60e 8 o _

L ope = =55 _ 3-00877 1043 — 154 j8,65, A.
= CA5 —_ ==

Ups =1 ams — L opg =—24/3-104/3e 10" =1154 — j8,65=14,42¢71%8 A
The electromagnetic system ammeter indication
| =12 +1% =/957% +14,42% =173 A

2.6. The three-phase non-harmonic circuit parameters calculation at
the load gather in symmetrical Y-connection with the neutral wire

Task.
In three-phase circuit there is non-harmonic EMFs symmetrical system (Fig.2.5).
The phase B EMF of three-phase symmetrical non-harmonic source is known

egy (@) =100v/2 sin(at +30%) + 60v/2 sin(3ct — 60°) + 30+/2 sin(5et —100°),V.
Impedances in the load phases on frequency of the first harmonic component is
known Z 4 =Zpyq =Zsy =15 0hm.

Write down the instantaneous value of linear voltage ugc and current in neutral
wire iy,. Determine indications of the electrodynamic system devices.

Task solving.
The equation of linear voltage ugc; for the first harmonic component we find

through difference fitting phase voltages
Ugy =100v/2sin(at +30°); U 5 =100e 7*°;
Ugy =100v/25sin(at —90°); U oy =100e7 10",
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The line voltage

Ugey =U g —U o =100 —e7197) =173 150" v

The instantaneous value

Ugey =~/2 -173-sin(ak +60°),V.

For the third harmonic component because of zero sequence we have

Ugca =Ug3 —Up3 =0.

The equation of linear voltage uges for the fifth harmonic component we find
through difference fitting phase voltages

Ugs =302 sin(5at —100°); U 5o =30e 11",

Ucs =30v2sin(5et + 20°); U s =100e12%';

The line voltage

Uges =U gs —U os =+/3-30-e 711077130 - /3.30. 7180 v/,

The instantaneous value

Ugcs =+/2 -~/3-30-sin(5et —130°),V.

The instantaneous value of line voltage contain the first and fifth harmonic
components

Ugc =Upgey +Upcs =~/2 -173-sin(at +60°) ++/2 - /330 - sin(5at —130°),V.
The electrodynamic system voltmeter indication

Uge =+U2c; +U2cs =173 + (v3-30)% =180,V.

We shall find current equation in neutral wire.

Phase voltage phasor value for the first harmonic component

U, =Uge i120° _100g 130" 120" _100g 150", Uy, 100 /%"
Ugy =Uge ™ =100e /3 e 120" =100e1%';




Currents phasor value in phases and neutral wire for the first harmonic component
U j150° - U i30°
|y =2 :100_e 666019 A lBlz_Blzloqe
Uc, 100e7 /7
fa=ze 15
£c1
Uaa =1t L+ 1oy =6,66e/% 16,660 775 16,668 19 =1333 7130 A
Currents phasor value in phases and neutral wire for the third harmonic component
U ps =U g =U o3 =60 1% V.
~j60° 60"
_Yns B0 T gge-is0 o [ _Yss _60e”
ZAg 3]15 ;BS J15/3
U ~j60’ .
[ 60e _ 418 A
Lcs 15
Pnng =1 astlpstlcs :1’339_1-1500 112130 | 410" :1L38ej9'50 A
Currents phasor value in phases and neutral wire for the fifth harmonic component
L—JAS :L_JBSe_leoo :30e_Jloooe—jlzoo :30e—12200 ’V, L_JBS :30e—]1000 ’V1

L—JCS = 306 jzoo ,V.

— 6,660 1% A

—6,66e 1% A

—12e1% A

U _12200 A 0 U _11000 - .
bs=7 " 30: o =04 A g =2 30-615/5 =106 A
£ A5 J Zpgs j
_QC5 :306_120 zzejzoo’A.

les=5 0= s
Lns =1 as + 1gs + 1 s =0,4e 71310 11007110 4 20120 —10e 34 A
The instantaneous value of current in neutral wire iy,

i = inm + Inng +inns 1 gs 1 cs =~/2-13,33sin(et —30°) +
++/2-11,38sin(3wt + 9,5°) + v/2 - 12sin(50t — 3,4°), A

The indication of the electrodynamic system ammeter

I =y 1 2 + 1 2ng + 1205 =4/13,33% +11,382 +12% = 21,24, A

2.7. The three-phase non-harmonic circuit parameters calculation at
the load gather in symmetrical delta-connection and when there are
Impedances in lines

Task. In three-phase circuit there is non-harmonic EMFs symmetrical system
(Fig.2.5). The phase B EMF of three-phase symmetrical non-harmonic source is
known



In three-phase electric circuit acts symmetrical non-nsinusoidal system EMF:
eap (at) =140cos(at) + 60sin(5at),V, where w=27/T at 7=0,015 s. The
scheme parameters R=24 ohm, L=75 mH, C=3754F. The scheme is
presented on Fig. 2.6.

Determine the electromagnetic systems indications of ammeter and voltmeter and
the active and apparent powers of three-phase system.

Fig. 2.6

Task solving.

For accounting the line inductive resistance we shall transform connections by the
triangle of EMF power supply and load into equivalent stars, Fig.2.7. Find the
phase voltage in the phases power supply on equivalent star

U ag (at) = —140cos(at) — 60sin(5at),V,

where w=2x/T =27/0,015=418,6rad /s ;

U, (o) = —@sin(a)t ~120°%) + @sin(wsoo) =

V3 V3
=—80,95sin(cwt —120°) + 34,7 sin(5wt + 30°),V.
At the defining of phase voltage u,(at) according to known line voltages, is
taken into account, that they differ as to modulus in /3 time. Between phase and

line voltages there is the shift phase 30° and for line voltage fifth harmonic
component is seen the phase interlacing negative sequences. That is why the fifth

harmonic component phase voltage lead line one on 30°.

Ug (wt) = —80,9sin(awt — 240°) + 34,7 sin(5wt +150°) =

=80,9sin(wt — 60°) + 34,7 sin(5at +150°),V;

Uc (et) =—80,9sin(ewt?) + 34,7sin(5et —90°) =

=80,95sin(cwt —180°) + 34,7 sin(5at — 90°),V.

The every line impedance:

- for the first harmonic component Z,; = jolL = j418,6- 75-107° = j3,14 ohm;



- for the fifth harmonic component Z,; = j5-418,6-7,5-10‘3 = j15,7 ohm.

. L C
O O = =
A “a
€ ) L

Phase load impedance

=63,7,Q;

Zr=R—JX.: X~ = =
=A Pe: ¥o1 oC  4186-37,5-10°

Xcs = Xgl = —63;’7 =12,74,Q;

Zy =24— J637;Zpps =24— j12,74,Q0.
For the equivalent star scheme the phase load impedance:

Zy,= ng - 24‘;63’7 =8- j21,23=22,68" 1%
Zys= Z§5 _ 24 ;)1274 =8 j4,246=9,056e 1% Q.

For the equivalent star scheme the phase load impedance with a glance of line wire
impedances:

Z,=Zy+Zy;=j314+8- j21,23=198e 1%

Zs=j157+8— j4,246=1396e %" )
The line current amplitudes:

, : U
- for the first harmonic component I =l g1 = I ey = —= = 809 _ 4,085, A,
Z, 198
, : U
- for the fifth harmonic component | s =l g5 = I mog = —> = 347 _ 2,485, A.
Zg 1396

The ammeter indication

| :%w/lﬁm +125 :%\/4,0832 +2,485% =337, A

The phase voltage amplitude on loade:




U mA1 — I mAlZYl = 4,085 . 22,68 = 92,64,V,
Uas = lmasZys = 2,485-9,056 =55,9,V.
Phase voltage effective value on load

Upy :%Ju 2p +U2 =4/92,64% +559% =76,7,V.

The voltmeter indication

U=+3-Upy =1,73-76,7=132,69,V.

Three-phase circuit active and apparent powers

- active power P=3-1%.Ry; =3-3,4% -8=277,44M.

- apparent power S=+/3-U -1, =+/3-108-34=635VA,
where non-sinusoidal voltage effective value

U, =\JUZ1 +U2.5 =~ 1402 + 602 =108 V.
- J2

2.8. Questions for one's own checking as to the calculation methods
of single-phase circuits within non-harmonic voltages and currents

1. Find voltage U effective value if R=10 Q, »L=10 Q,
i = (5+5\/§ sin wt —5+/2 sin(2a)t + 450)),A.
R L
w
2. Find current | effective value, if

u = (100-~/2 -sin et —100/2 sin(3et + 60°)), B; L =10Q; % =30Q.

el

3. Find circuit power factor, if given R=4 Q, x;=w-L =3 Q, and current is

i =(4+3\/§sina)-t), A.
oy
F

4. Find apparent power S of the circuit, if given: i = (4+3v2sin at), A;
z

=(4+j3), Q.
u ”_:'W
oy

5. For the circuit applied voltage u = (100+100ﬁ sin(lOOt +45°)) V. Find reactive
1

w-C

power Q of the circuit, if given R=w-L = =10 Q.



el

6. Determine distortion power T of passive one-port scheme, if given voltage
u=100v/2sin at, V and current i = (10+10\/§ sin(a)t + 60°))A.

7. For the one-port scheme applied voltage u = (100+14lsin(100t +45°)), V, under

one flows current 1 =5sin100t, A. Find apparent power S.
8. Determinate power factor of passive one-port scheme, if given

u= (120\/5 sin et +50+/2 sin(3a)t + 450)), V, i =4/2sin at , A.
9. Determinate active power P of circuit which contain series connected R, L
elements if i = (6 +3+/25sin a)t), A, R=4 Q, alL=3 Q.

UE,_DEE_:’\:’I:/—\_T
&

10. Find active power P which is consumed in circuit if u = (100+1003in(a)t +45°)),
V,
C=100 «F, R=10 Q and circuit is work at current resonance (=314 rad/s)

A

11. For the series connected R, L, C elements applied non-sinusoid voltage

U=100+~/2 -100sin(LOOt + 45°), V, al = % =R=100 Q. Find active power P

which is consumed in circuit.

el

12. Find active power P which is consumed in circuit if

U =(100v2sinat +20V2sin3et)V, R=10 Q, =30 Q.

ot ]

Xc I_ﬂ

13. Find active power P which is consumed in circuit if

u = (100v2sint + 407/2sin 26t),V, R=20 Q, o, =10 Q.

e I
R L

14. To the one-port scheme is applied voltage u = (100+150$in(100t +45°)),V,

under one flows current i=5 A (instantaneous value). Find active power P which
is consumed in the one-port scheme.




15. To the one-port scheme applied voltage u = (100+1413in(100t +45°)), V, under
one flows current i =5sin(100t), A. Find active power P this is consumed in the
one-port scheme.

16. To the circuit applied non-sinusoidal voltage u =100+ 5sin at, V;

1 : : :
—— = wlL = R. Determine the reading of magnetoelectric system voltmeter.

17. Current and voltage of one-port scheme are giveni = | ,ySin at, A
U=Uo+Umsin(et +45°), V. Define x, = ol if R=1/(C)=40Q.

18. To the circuit apply non-sinusoidal voltage u = (20+10\/§sin a)t), B. Given

R=10 Q, wlL = %zlo Q. Determine ammeter A readings of electromagnetic

system.

19. To the circuit applied non-sinusoidal voltage u = (20+10\/§sin100a)t), AV
R=10 Q, oL = % Determine electromagnetic system ammeter Al readings.
y
oF ol T
20. To the circuit applied non-sinusoidal voltage u = (100+ 70,5sin100t),V,

R=100 Q, C=100 uF . Determine display of voltmeter V of electromagnetic
system.

C R
u

o
=

21. To circuit applied non-sinusoidal voltage u = (100+141sin100), V. The circuit
parameters given: C=100 4F , L=1 H, R=10 Q. Determine electromagnetic
system voltmeter V readings.




L

u

K
T C |
e

22. To circuit applied non-sinusoidal voltage u = (100+1505in a)t) V. The circuit

parameters are: »=100 rad/s, C=100 xF , L=1 H, R=10 Q. Determine
electromagnetic system voltmeter V readings.

- C

23.Given: u = (100+150sin100t), VV, C=100 #F , L=1 H, R=10 VQ. Determine
electromagnetic system voltmeter V readings.

24. Find voltage U effective value if R=20 Q, oL=5 Q,
i = (5+5\/§ sin awt —5+/2 sin(Zcot + 45°)),A.

R L
.

25. Determine electromagnetic system ammeter A readings, if
u = (1002 sin @t —100+/2 sin(3et + 60°)), V. @L.=10 ohm, % =30 ohm.

RO Reltin

26. Find voltage that applied to circle, if there are given R=4 ohm, x, =L =3
ohm, and current i = (4+3v2sin et ), A.

L RI:l o
27. Determinate active power P of circuit which contain series connected R, L
elements if R=4 ohm, x =« =3 ohm, and current is i= (4+3\/§ sin a)t), A.




I Rl:l o

28. Determinate reactive power Q of circuit which contain series connected R, L
elements if R=4 ohm, x =« =3 ohm, and current is i= (4+3\/§ sin a)t), A.

L Rl:l o

29. Determinate apparent power S of circuit which contain series connected R, L
elements if R=4 ohm, x, =« =3 ohm, and current is i= (4+3\/§ sin a)t), A.

L Rl:l o

30. Determinate distortion power T of circuit which contain series connected R, L
elements if R=4 ohm, x =l =3 ohm, and current is i= (4+3\/§ sin a)t), A.

L Rl:l o

3. THE CALCULATION METHODS OF TRANSIENTS IN
LINEAR CIRCUITS

3.1. Study guides as to the calculation of transients in linear circuits

1. Transients calculation by classical approach.

1.1. Transients appear in electric circuits where in reactive elements there are
electromagnetic stored energy changes. The stored electromagnetic energy at the
finite energy power sources can change only as smooth, without step changes
which brings to the transients appear.

1.2. We consider the stored electromagnetic energy change at expense of
switchings in the circuit branches. Any switching in circuits we determine by
""coomutation” term.

1.3. Switching are performed by means of keys. In electric circuits are used the
keys of two types: normally closed contact (normally closed contact, normally-on
contact, front-release contact) and normally open contact (make contact, front
contact, normally-off contact). The normally closed contact till coomutation have
the resistance equal to zero, and after of coomutation this resistance equal to
infinity. At normally open contact till coomutation resistance is equal zero, and
the after of coomutation is equal to infinity.

1.4. In the circuit transient is described by nonhomogeneous differential equation.
The order of differential equation uniquely is determined by quantity of energy
storages in electric chain. In the right part of nonhomogeneous differential
equation situate the value of quantity which determined by the circuit parameters
power supply.



1.5. The nonhomogeneous differential equation solution is defined in the form of
the two integrals sum. The first integral is determined by the general solution of
homogeneous differential equation and is called this deciding as natural component
of transient and second integral is determined by the partial decision of
nonhomogeneous differential equation and is called this deciding as forced
(enforced) component of transient.

1.6. The transient natural component is defined by the characteristically equation
roots. The characteristically equation roots is funded from the operational
resistance of electric circuit after commutation. For characteristically equation
every root correspond its transient exponential component.

1.7. The real parts of the characteristically equation roots should be negative, that
correspond to extinctions transient.

1.8. The value reciprocal to modulus from the characteristically equation root real
part is the constant time of transient. The transient to last from three till 5 constants
time.

1.9. Deciding of differential equations brings to the necessity of the calculation of
integration constant which are calculated based on independent and dependent
initial conditions.

1.10. Independent initial conditions are determined on electromagnetic energy
storages. Independent initial conditions are calculated based on laws of
commutation.

1.11. The first commutation law: in any electric branch comprising inductance
element the current and flux linkage at the commutation moment preserve values
which they are owned directly before commutation moment, and in further they
change beginning from these values. In particular case the first commutation low
can be formulated as a commutation rule: current in inductance by stepwise does
not change.

1.12. The second commutation law: in any electric branch comprising capacitance
element the voltage and charge at the commutation moment preserve values which
they are owned directly before commutation moment, and in further they change
beginning from these values. In particular case the second commutation low can be
formulated as a commutation rule: voltage in capacitance by stepwise does not
change.

1.13. The beginning count of transient performed from the commutation moment.
1.14. Dependent initial conditions are calculated based on independent initial
conditions and Kirchhoff's laws composed at the commutation moment.

2. The operational method of the transient calculation.

2.1. On the calculation first stage are determined according to the coomutation
laws the independent initial condition on storages of electromagnetic energy under
the commutation laws.

2.2. On the second stage of calculations pass on from area real variable to
operational representations, with this end in view be built the replacement
operational scheme, in which nonzero initial conditions on energies storage are
taken into account by means of input additional EMFs.



2.3. By the operational replacement scheme we define the sought quantity by
means of deciding of algebraic equations by one of known methods: under
Kirchhof's laws, of mesh currents, of node potentials, of transforms, of
superposition, of equivalent generator.

2.4. On the third calculation stage being looked the value will be obtain in the form
of the fractional-rational function as quotient of the polynomials of numerator to
the denominator polynomial.

2.5. We pass on from the area of operational images into area real variable. In
simplest cases we use the tables of conversions, and generally case by means of the
applications of the expansion theorem.

3. The calculation of transient by the variable states method.

3.1. Alongside with branches current and voltages in the capacity of variables there
IS convenient to choose variables which bring to deciding of differential equations
in normal form or Cauchy's form. The normal form of the system of differential
equations define that every equation comprises only the first derivation of fitting
variable which is written down in the left part of equation. Right part of equation
does not comprise derivations and there is linear function of selected state
variables and acting in the circuits the energy sources. Such variables are states
variable, and the equations are the state equations. Whereat state variables will
form the equations system from the minimal number of variables which
completely determine transient current and voltage functions in all branches of
circuit after commutation.

3.2. The quantity of the first order equations in Cauchy's form in the equations
system and variable stats quantity, there is equal to the differential equation order
or to energy storages in circuits.

3.2. For electric circuits as state variable conveniently to accept currents in
inductive elements i, (t) and voltages on capacitive elements uc (t), where there

are fulfiled independent initial conditions.

3.3. Using Kirchhof's laws compose the equations system in normal form in which
enter the state vector, the energy sources parameters and branches resistance

O AX 4BV,

dt
where X - the state vector; V — supply sources vector; A,B — coefficient
matrixes, which defined by circuit branch parameters.

3.4. The received differential equations system

O~ AX BV

dt

is decided analytical by using the apparatus of matrix transformations or by digital
methods by means of differential equations integrating with allowance for initial
condition in Cauchy's form.

3.5. Having found the circuit state vector X , then output vector Y is determined as
the linear combination of the state vector and the energy sources vectors



Y=CX +DV,
where C,D - coefficients matrixes which determined by the circuit branches
parameters.

4. Transient calculation on basis of the Duhamel integral (superposition integral)
4.1. By classical or operational methods find transients in circuits at perturbations,
when ones has analytic description.

4.2. For the relief of the search the dependent initial condition at the commutation
moment in inductive coil suitable to replace ones by ideal current sources, and
capacitive elements by the ideal voltage sources. The current value of current
source is determined by the first commutation law and the voltage value of the
ideal voltage source under the second commutation law. At zero initial conditions
can be considered that inductive coil at the commutation moment tears branch,
where it is included, and capacitive content shunting the subcircuit branch, where it
is included.

4.3. By transient function find normalized transient function upon of single power
supply: voltage source with output voltage 1 V or current source with output
current 1A. The normalized transient function in depending from dimensions input
and output signals can have dimension of resistance, conductions or to be
dimensionless value.

4.4. Perform the piecewise-linear approximation of input voltage or current by
analytic description by time functions.

4.5. For the separated input curve pieces of piecewise-linear approximation apply
one of the forms of Duhamel integral and find the circuit reaction upon given
complex input signal as the decisions sum form which are connected on the
borders of the approximation pieces.

3.2. The circuit parameters calculation of transients in branched

resistive-inductive circuit

| Ri Task.

Calculate transients current and voltage

R by classical and operational methods in
S electric circuit, Fig.3.1 that comprising

»[ elements: Ryy =Rk =R=10 ohm,

IL L, =005H,U=20V.

ragl

R
l L Task solving by classical approach.
K .
Y Y Yy Before of commutation moment the
circuit comprises only one branch that
_ flowed by current )
Fig. 3.1 i, (-0)=U/(Rg +Rg )=20/20=1A.




In according to the current’s value i, (-0) =1, A before the commutation moment

inductive coil stored energy in magnetic field W, (—0)=Li%_ (-0)/2. At

termination of transient the inductive coil flowing by direct current (forced
response)

=0,67,A.

o U R
ﬂ‘ - ES— N

RE +R
At termination of transient stored electromagnetic energy in inductive coil
Wﬂ_(—O):LiZﬂ_IZ to change (be decreased), because flowed coil current is

reducing. Based on continuity principle of the stored electromagnetic energy in
circuit appears transient. For the calculations simplification current and voltages in
branches with inductive coil simpler to find current at first, and voltage on
inductive coil to calculate as voltage drop from this current.

After commutation moment are generated natural (index n) and forced (index f)
currents in every branches

=i, +i¢;ig =lge +igi =l +ip,-

The current branches forced component find after the transient ending . In the
calculation is taken into account, that ideal inductive coil does not accord
resistance to flowing direct current, and currents in parallel branches are
determined as in divider currents:

i = Y 133 Ain = Y Re ~0,67,A;
f Re -R R Re ‘R R: +R
RS+RE Rg + —E E
g +R RE +R
i = Y R _067.A
N Re ‘R Re +R
> Re +R

The natural components of transient find as to the roots of characteristically
equation. This equation find through circuit resistance for alternating current after
commutation moment

R + joL¢ )-R

Z — RS + ( K JCI) K) .

Rk + JoLk +R

Into found resistance introduce the characteristically equation root p by means of
the formal replacement of symbols jo — p and equalization equation to zero

4 (R + pLy )-R —0.

Rk + pLx +R
We separate the root of characteristically equation
(R¢ + pLi)-R _Rs(R¢ + pLy +R)+ (R + pLy)-R _
Rq + pLq +R Rg + pLy¢ +R -
The fractional rational function is equal to zero, when numerator is equal to zero

S

Rs + 0.




Rs(Rk + pLx +R)+(Ry + pLk )- R=0.

The desired root quantity of characteristically equation

. Rs(Rk +R)+Rg -R _ 10-20+100 _ 3000004/,
Lk (Rs +R) 0,05-1073-20
For found root generally correspond of natural branches current

i =AePi = AePiy, = Ae™,

where A, A;, A, - integrating constants.

For the search of integrating constants find independent initial conditions
IL(0)=U/(Rs +Rg)=20/20=1A.

Dependent initial conditions find according to independent ones and Kirchhof's
laws composed at the commutation moment

iL(0)=LA

1(0) =i (0) +ix (0);

U =i(0)Rg +ig (0)R.

We find solution of the equations system with two unknown currents
i1(0)=1+ig(0); iR (0)=05,A

20:10-i(0)+10-iR(0)} 1(0)=15, A }

Having found dependent initial conditions find the integrating constants A, A, A,
by using initial equations transient currents at the commutation moment (t=0)

i(0)=1i,(0) +i (0); 15=A+133; A=15-134=017;
i, (0) =i, (0) + ire (0); 05=A, +0,67; A, =05-0,67 =-017;
i, (0)=i,,(0)+i (0); 1=A +0,67; A =1-0,67=033

Found solution for branches current
i = 0,16 7300000t , 133

ip =—017e730%0%01 4 067,

i, =033 %% 1 067.
The voltage drop on inductive coil
' —300000-t
u,_=Lg ddI_tL ~0,05-107° d(0,33e = +0,67) _ _5g 300000t \/.

The voltage on inductive coil can be calculated directly as sum of forced and free
components

The forced component of the voltage drop after ending of transient is equal to zero,
because the inductive coil flowing by direct current u ; =0.




The free component define according to the characteristically equation root
p=-3000001/fA: u,,=A,eP. We find dependent initial conditions having
applicated to the exterior contour second Kirchhof's law

U =i(0)Rs +i_ (O)Rk +u, (0); 20=15+10+u,(0); u, (0)=-5\V.

The initial equation at the commutation moment

u_(0)=u_,(0)+u;(0); —5=A, +0.

Desired solution for transient voltage on inductive coil the after of commutation
moment coincides with early found value u, =-5e~3%%%1 v/,

i,e
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Fig. 3.2.

The graphs of the computative values of the transient voltage on inductive coil and
branches currents are presented on Fig. 3.2.

Task solving by operational method.

Nonzero initial conditions on energies storage (coil inductive) defined according to
the first commutation law

i, (0)=U/(Rs +Rg)=20/20=1,A.

The operational replacement scheme is built after commutation moment with
allowance for nonzero initial conditions, Fig.3.3.

Images of being looked for branch currents find by mesh method in operational
form



Rs I.(p)
>

E T) IR(p)l

P m " l Lk -i.(0)

111 (P)

Fig. 3.3

131 (P)Z11(P) = 12 (P)Z12 (P) = E11 (P) }
—112(P)Z o1 (P) + 1 2 (P)Z 22 (P) = E (P)

l13(P)(Rs +R) — I (P)(R)=U/p }
=133 (P)(R) + 12 (P)(Re + R+ pLy)Zx(p) = Lki_(0)
11, (P)(20) — 15, (p)(10) =20/ p
— 131 (P)A0) + 1 5, (p)(20+ p-0,05-107) =0,05-1072 -1
20 ~10 5
= 3| =20(20 + p-0,05-107°) —100 = 300 + 0,001p;
~10 20+ p-0,05-10
20/ p ~10

:@(20+ p-0,05-10°%)+05-107° =
p

A _‘0,05-10—3 20+ p-0,05-107°
:4_oo+1’5_10_3 _ 400+15-107° P.
p p
20 20/ p
~10 0,05-1073
The scheme’s mesh currents images
400+15-107° p
|11(p)=ﬁ: P :400+1,5-1o—3p_
A 300+0,001p  p(300+0,001p)’
200+1-1073 p
|22(p):A2= D _ 200+1-1O_3p.
A 300+0,001p  p(300+0,001p)

200 1-107°p+ 200
p p

Ay = =1-107% +




The scheme’s branch currents images

400+15-10°p _ Fy(p).
H(p)=lu(p)= p(300+0,001p) F,(p)’

IR(P)=111(P) = 152(P) =

400+15-10°p 200+10-10°p 200+0,5-10°p _ Fy(p).

p(300+0,001p) p(300+0,001p) p(300+0,001p) F,(p)’
(D) =1, (p) = 200+10- 10°%p  Fs(p)

't '22 p(300+0,001p) Fy(p)’

We find originals of desired currents quantity in functions real variable using the
expansion theorem

Fy(p) =400+15-107° p; Fp(p) = F, (p) = F5(p) = p(300+0,001p);
F5(p)=200+0,5-10" p; F(p) =200 +1-10"2 p;

F,(p) = F4(p) = Fs(p) = p(300+0,001p)=0— p, = 0; p; = 300000
F;(p) = F4(p) = Fg(p) =300+ 0,002p.

i(t) = Fl( Pn) X _FR(0) o0t 4 F, (—300000) o-300000t _
n= o F(p n) FZ (0) FZ' (—300000)
_ 400 400+15-10"3(-300000) _a00000-
300 300+ 0,002-(—300000)

=133+ 0,168,

(t) = FS(pn) onit _F3(0) jor  F5(=300000) 300000t _
RM)=2 Fp). (0 T F/(=300000)
_ 200 200+0,5-10"*(-300000) _so000.
300 ' 300+ 0,002- (—300000)

(t) = FS(pn) ol _ F5(0) Fs(0) o F5(—300000) o-300000t _

|— - ' ' -
e o Fe( n) ~ F(0) Fe (-300000)

_200 200 +1-1073(=300000) _300000.t
300 300+ 0,002 - (—300000)

—0,67 + 0,33 300000t

The operational image of the voltage drop on inductive coil find under the law
Ohm's in operational form

200+1,0-103 p
U =1 L, = ’
L(p) L(p)p K p(300+0001p)
001p+005 .107° p_ F,(p)
p(300+0,001p) Fs(p)

p-0,05-1073 =




The voltage original on inductive coil find having applicated the expansion
theorem

_ v+ F(Pn) ot _F7(0) jor , F7(=300000) 300000t _
SFR(py) . R0 F(=300000)

0 N 0,01(-300000) + 0,05 -10~° (~300000) o-300000t _ £, ~300000-t \;.
300 300+ 0,002 - (—300000) Y

3.3. The circuit parameters calculation of transients in branched
resistive-capacitive circuit

R, a R Task.
q Calculate of transient currents and voltages by
Ug classic and operational methods in electric circuit,
Q‘) S C luc Fig.3.4 which comprising elements: Ry, =R =10
E [ I T ohm, C=10 4F, E=20 V.
< b
Fig.3.4 Task solving by classical approach.

In branches comprising capacitive elements more
convenient in the beginning to find voltage on capacitances, and current to
determine as derivative from the calculated capacitive voltage. Branch resistance
comprising key S after of commutation moment is equal to zero, that is why the
scheme after of commutation moment breaks into two independent contour: left
and right ones, in which flowing independent transients.

We reckon of branches current and voltage on capacitance by the superposition
method of forced and natural components

=i, +1i¢;ic =lgy +igs U =igy +ics -

The forced component find in circuit at transient termination. We take into account
that ideal the capacitive element direct current does not conducting

if :EZZ,O,A;icf :O,A;qu :O,V.

RO
General solutions for transient natural component determine according to the
characteristically equation roots. Roots find as to input resistance for alternating
current. Because characteristically equation is common for all circuit therefore in
this calculation more convenient to find the input resistance relatively of branch
with capacitive

;:_i+ R.
JaC

O



Work into last equation the root of characteristically equation by means of the
formal symbol replacement jo on symbol p and after equalization the equation to

zero, shall receive

1 +R=0.
pC
From where the value of the characteristically equation root
p:— 1 = — 1 621‘10_4,C
RC  10.10-10°

o1 _100001/c
p| 10000

For the characteristically equation root correspond currents and voltage natural
component

i, =AePlic, =Aeuc, =Ae™,
where A, A;, A, - integrating constants.

For the integrating constant define we find independent initial conditions. As to the
second commutation law the voltage on capacitive element
uc (0)=E=20,V.

Dependent initial condition find as to independent ones and Kirchhof's laws which
composed at the commutation moment

E=i(0) Ry; i(0)=E/R, =2;
i (0)- R +uc (0) :o} ic (0) :—uC(O)/R:—Z}

The time constant of transient 7 =

Having found dependent initial conditions find the integrating constants A, A, A,
using initial equations currents transient at the commutation moment in t=0

1(0) =134(0) + 15 (0);ic (0) =icsa (0) +icis (0);uc (0) =icka(0) +icis (0).
Subdetituting the digital values obtain

20=A+20;

- 2,0 = A2 + 0,0,
20= A, +0,0;

A=0;
A, = 20.

Found deciding for current branches and voltage on capacitance
1=2,0;

i = —2,0g7100001.

Uc =20e

Absence natural current component in branch with power supply bears evidence
about step change current from initial zero value till two amper without the

—10000-t



generation natural component of transient. This is explained by storage energies
absence in contour with power supply after commutation.
The capacitive current is defined through derivative from capacitance voltage

10000+t
duc _10.10°° d(20e )

IC — _ _2’06—10000~t ’

There is directly confirming the solution as correct.

U
R (P) Task solving by operational

method.

—_—
| w8 R e (p)
(p)T 1 ¢ The nonzero initial condition on
S 1 Uc(p) energy storage (capacitive element)
— ¢ define as to the second commutation
El L
0 b <

law uc (0) = E =20,V.
uc (0) The operational replacement scheme
Is built after commutation moment
P with allowance for nonzero initial
_ conditions, Fig.3.5.
Fig.3.5 The operational image of desired
branches current find under the
Ohm's law in operational form, because transients in contours are independent

E(p)_ E _ 20 _F(p)

1(p)= == :

RO pRO 1Op F2(p)
I(p):_uC(O)/p:_uC(O)-C:_ 20-10-10° _ Fy(p)
c 1 .5 1+4pRC 14+p-10-10-10° Fy(p)’

pC

We find originals desired currents in functions real variable using the expansion
theorem

F (p)=20;F,(p) = pRy; F2(p) = pRy =0— py =0;

F2(p) =Ry =10;

F3(p) =-200-107°; F,(p) =1+100-107° p; F; (p) =100-107°;
F,(p)=1+100-10"° p=0— p, =-10000.

i(t)= > F(Po) pr _ P10 jor _20

, ; =2,0A;
n=0 F2 (o) F;(0) 10



i)=Y F.’s:(pn) oPt _ F3: (-10000) 10000t _
=F(p,) F, (~10000)

_—200-10°° g 100004 _ 5 5100004 A
100-107°
We shall find the operational image voltage drop on capacitance under the Ohm's
law
1 uc(0)-C 1 uc(0) 1 F(p)
Uc(p)=1c(p)- =——=< : =——= =2
pC 1+ pRC pC 1+ pRC p Fg(p)
The original of desired voltage on capacitive in real variable function we find by
using the expansion theorem

Fs (p) =-Uc (0) = —20; F¢ (p) = pF, (p) = p(L+ RCp),
Fs(p) = p(L+0,0001p)=0— py =0; p; = —10000;
F¢(p) =1+ 2RCp =1+ 0,0002p.
i(t) = i Fs(Pn) g Pt :FS_(O)eOt n F5 (-10000) g 10000t _
n=0 F(Py) F¢(0) F¢ (~10000)
_-20, —20

1 1+0,0002-(~10000)

The calculation result of the voltage drop by ope3rational method reveals that in
final equation is taken into account not only voltage on capacitive element but also
nonzero initial condition on the capacitor.

e—lOOOO-t _ _20 + 20e—10000-t ,V.

3.4. The circuit parameters calculation of transients in branched
resistive-inductive-capacitive circuit

Task.

Calculate of transient currents and voltage by
classic and operational methods in electric circuit,
Fig.3.6, which comprising elements R; = 0,1 ohm;

R, =01 ohm; R;=10 ohm, R, =10 ohm,
L=1,0 mH, C=30 4, E=20 V.

Task solving by classical approach.

In order to avoid the operations of integrating of
eventual results, find branches current and voltage
on capacitor. The drop voltage on inductive
element we shall find as derivative from current in
inductive one. We present transients as sum
enforced and natural components

I =1 Hlssle =len Fleg sl =gy T Ire sUc =len + et -

Fig. 3.6



Transient functions forced component find in chains at termination transient, the
taking into account null resistance of ideal inductive coil and the resistance
infinitely large of capacitor to direct current

E 20

I = = =198 A,
Ri+R; 01+10
icr =0;

qu = in . R3 :1,9810 :19,8,V.

For determining transient natural component compose characteristically equation
using the circuitt resistance to alternating current. From circuit delete energy
sources leaving their inner resistance into calculated scheme, and tearing branch
with capacitor, we have
z- 1 i, (R1+ja)L?R3 |

JoC R; + Ry + Jol
By introducing into received equation the characteristically equation root by means
of formal replacement the symbol of p instead symbol jeo and received equation

set equal to zero, we shall receive

L+R2+ (R1+ pL)R3 —

pC Ry +Ry + pL

(Rg+ Ry + pL)+R, pC(Ry + Ry + pL)+ pC(R, + pL)R; _
pC(Rg + Ry + pL) o

The fraction is equal to zero, when numerator is equal to zero
(Rg + Ry + pL)+ R, pC(R; + Ry + pL)+ pC(R; + pL)R; =0.

We do ordering of the polynomial relatively of characteristically equation root p

P?CL(R, + Rg) + p(L + C(RyR, + RiR, + RiR;)) + (Ry + R; ) =0.
p?3,03-10~" + p-1,06-10~ +101=0.

We define the roots of characteristically equation

 ~106-107 +/(1,06-107%)2 —~4.3,03-10~ -101 _

- 2.3,03-1077 -
=—1749+ j5502=6 + jo.

Received roots are conjugated that bears evidence about oscillating transient with
attenuation decrement 6 =-99,75 and by the frequency of free oscillating

@=5502rad/s. The transient constant time 7 = ‘5 ‘1‘ ~174971=57.107%,s.

For found roots correspond generally form the nature compoonents of transeint
functions

P12



i, = Be?sin(ot + £y);

ic, = Be? sin(at + 3,);

i, = Bse?sin(wt + f3;);

Ucy = Bse? sin(at + £,),

where By, B,, Bs, £, >, f5 - unknown integration constants.
Independent initial condition reckon under the commutation laws

i (0)= E = 20 =0,995, A,
Ri+R;+R, 01+10+10

Uc (0) =i, (0)(Rs +R,)=0,995-20=19,9,V.

Dependent initial conditions find as to independent ones and Kirchhof's laws
which compose at the commutation moment (t=0)

i, (0)=0,995A;

Ug (0)=19,9,V:; 0,995=ic (0) + i (0);

i, (0)=ic (0) +ig (0): L 04-ic (0) +19,9=10-ig (0); >

ic (O)R 0) =i (O)Rs: _ i

'c Oz +Uc (0)=1r () g 20=0,0095+10- 5 (0) +1-103 2L

E=i_ (O)R, +ig(O)Rg + Lok t=0
t=0

i, (0)=0,995;

i (0) = —0,985;

ir, (0) = 198;

dil 1005, Als

dt |,

We find dependent initial conditions for current in capacitance and omhic
resistance by means of differentiation the initial equations system

iL(0)=ic (0) +ig (0); }
ic O)R; +uc (0)=ig (O)Rs;
over the time

dif| _dic| | din| .| g ic| | din|
dtfo dtl_, dtl dt [, dt]_
di i~ (0 i di — '
ZL + Ic ( ):dei : Ql.ﬁ + 0’9856 :10.% :
dt |, C dt |, dt|,_, 30-10" dt |, )



y
e 325132
dt |,
ARl _ 305082
T

: : : du [ du ic (0
where is taken into account uc :ljlcdt—>—cz£ c| el )
C d¢t C ~dt|_, C
Having found dependent initial conditions find the integrating constant

B,, B,, B3, A1, B>, A5 in consideration of initial transient currents and voltage

i, =i +i, =i +Be*sin(ot+ A);
ic =ic +icy =icr + Boe? sin(wt + f3,);

ig =ins +igy =i + Bse® sin(at + Bs);

UC = qu + UCn = qu + B4e& Sln(a)t + ﬂ4)
In the last equations system in every equation there is two unknown B, £. So as to

the number of equations corresponded number of unknowns, from last equations
find derivative over the time

ddi_tL =B, - e sin(at + S;) + Ble&a) -cos(awt + f;);

% =B,5-e% sin(wt + B,) + B,e% - cos(at + f3,);
ddi_tR =B;5 - e sin(at + f3) + B3e5ta) - cos(at + f3);
‘tj_f =B,5-e%sin(wt + B,) + B,e%w - cos(wt + 3,);

and after consideration of the two last systems of equations at the moment of
commutation (t=0)
iL(0)=iy¢ (0) +1.,(0) =198 + By sin(,);

ic (0) =i¢t (0) +1ic, (0) =0+ Bysin(5,);
i~ (0) = icy (0) + i, (0) =198+ BySin(Bs ):
Uc (0) = ucs (0) +Uc, (0) =198+ By sin( )

.
J



dt f;_g
dic) _ B,d -sin(f,) + Bow - cos(wf,);
dt i
diel _ g 5.sin(s) + Byw- cos(fy);
dt l_o
dstC =B, -sin(B,) + Byw - cos(B,).
t=0

We substitute digital values into the system of equations

0,995=1i (0) +i_,(0) =1,98 + B sin(3,);

1,90 =g (0) +ig,(0) =1,98 + B;sin(Ss);

19,9 =ucs (0) + U, (0) =19,8 + B, sin(f,),

100,5=B5 -sin(f;) + Byw - cos(f,);

3251,32=B,0 -sin(f,) + B,w - cos(wf,);

— 3250,82 = 835 . SII’](,B3) + Bga) . COS(ﬂ:;),

ic(0)  -0,985
C 30.10°°

For example we find Bg, #5 for current iz. With this end in view from the last

equations system choose two equations comprising two unknown values Bs, 53

1,90 =g (0) + igws (0) =1,98 + B, sin(5s);
—3250,82 = B30 - sin(f3) + Byw - cos(fs);
B, sin(/;) = —0,08; }

=-3283333=B,0 -sin(f,) + B, - cos(f,);

—3250,82 = B30 - sin(f3) + Byw - cos(f3);
—3250,82 = B30 - (—0,08) + Byw - cos(Ss);
—3250,82 = (—1749) - (—0,08) + 5502B; - cos(;);
B - cos(f;) =—0,616; By sin(5;) =—0,08;

BsSIN(Aa) _ 45, = =998 _ (129 5, — arctg(0129) = 7,39°;
B; - cos(f;) —0,616
B3 _ — 0,08 _ - 0108 — _0’62’ A,

sin(f)  sin(7,39°)
Deciding for transient current i have of the form

ig =i +ig, =ir + B3e®'sin(ot + fB;) =

=1,98 - 0,62e 19 sin(5502t + 7,39°), A.



The integrating constants rest B, S define similarly from the same system of

equations by means of the choice the equations pairs comprising with two
unknown values B, g

i =iy +i, =198+ 0,985 %" "sin(5772,64t —89,9%), A;
ic =ics +icn =1126-e7%™sin(5772,64t - 60,9°), A;
ig =ins +ig, =1,98—0,56e"%"*sin(5772,64t +813°);

Uc =Ugs +Ucy =19,8 - 5,72e% sin(wt —1°),V.

Task solving by operational method.

Unnull initial conditions on storage energies

(capacitive and inductive elements) define
under the commutation laws
: E 20
i (0)= - =0,995, A;
(D) Ri+R;+R, 01+10+10
lR Pl e (0) =i, (0)(Rs + R,)=0,995-20=19,9,V.
The operation replacement scheme is built

after commutation moment with allowance
for unnull initial conditions, Fig.3.7.

The branches currents calculation we perform
in operational form by method of mesh

current

Z11(P)111(P) — Z1212(P) = Eq1 (P); }
= Zy1(P) 22 (P) + Z(P)22(P)=Ex(P),

E.
+_

) 0
(R1+R2+%+pL)ln(p)—(Rz+%)lzz(p)=uL(0)—“C;) -

- (R, +%)I22(p)+(R3 +R, +%)'22(D)ZE22(D),

(PL+R +R,)pC +1, (p)_ PCRa 1, oy LiL(Op-Uc(Q)+E.
oC 12(P —pC 2 \P)= ;
pCR, +1 (R3 +R,)pC +1 uc (0)
— 2 0 | = :
oC 2(p)+ c 22(P) )




((PL+R; +Ry)pC+1  pCR, +1

N pC c |
_ pCR, +1 (R3 +R,)pC +1
pC pC |

_ P?LC(Rg +Ry)+ p(L+C(R + R, (R + Rz)—R22)+((R1+R2)+(R3+R2)—2R2)_

pC

p?CL(R, + Rg) + p(L + C(RyR, + RR, + RiR;)) + (Ry + R; ) =0.

ILi_(Q)p-uc(0)+E _ pCR, +1
A, = P pC _
1 uc (0) (R +R,)pC +1
p pC
_ P?(LiL(0)(Rs + R, )C) + p(Liy (0) + (E — g (0))(Rs + R, JC +Uc (O)CR,) + E |
p°C |
|(PL+R;+R,)pC+1 Li_ (0)p—uc(0)+E|
A. = pC p _
2 _ pCR, +1 uc (0)
pC p
_ p2(CLuC (0)+Li_(0)CR,) + p((Rl +Ry )CUC (0)+Li (0)+CR,(E-uc(0))+E.
p°C ’
p*(Li_ (0)(Rs + R, )C) + p(Li,(0) +
+(E —uc (0))(Ry + R, )C +uc (0)CR,) + E
|11(p)=ﬁ= p°C

A~ pPLC(Ry + Ry)+ p(L+C(Ry+ Ry )Rs + Ry)—RZ) +
+((Rg+Ry)+(R3 +R,y)—2R,)
pC
_ p®(Li_ (0)(Rg + R, )C) + p(Li (0) + (E —uc (0))(Rg + R, )C +Uc (0)CR,) + E .
(pZLC(R3+R2)+ p(L+C(R1+R2)(R3+R2)_] |

~R2) + (R, +Ry)+ (Rs + Ry )~ 2Ry)
|22(p)=%:
i p?(CLuc (0) + Li, (0)CR,) + p((R; + R, )Cuc (0) + Li, (0) + CR, (E —uc (0))) + E .
[szC(R3+R2)+ p(L+C(R1+RZ)(R3+R2)_R22)+J ;
+((R +Ry)+(Rg + R, ) - 2R,)




Operation image of the scheme branches current

I (p)=111(p) =
p?(Li (0)(Rs + R, )C) + p(Li, (0) + (E —uc (0))(Rs + R, )C +Uc (O)CR,) + E

" p(P2LC(R; +Ry)+ P(L+C(R, + Ry Ry + Ry )—RZ) + (R, + Ry )+ (Rs + Ry )—2R,))

_ 81, P° +ay1 P+ ayg _Ni(p).
(b12p2+b11p+b10)p D, (p)

IR(P)=12(p)=
_ P(CLug (0) + Li_ (0)CR,) + P((Ry + Ry )CUg (0) + Li (0) + CR,(E —uc (0))) + E _

(pZLC(R3 +Ry)+ p(L+C(R + Ry )Rs + R,)— R?) +J
+((Ry+Ry)+(Rg + Ry )— 2Ry)

_ apptragpray _ Ny(p).
(b22p2+b21p+b20)p D, (p)

lc (p)=111(P)—15(p)=
((E —uc (0))(Rs)C = (Ry JCu (0))

B p®LC(Rg +R,)+ P(L+C(Ry + Ry (R3 +Ry)—RZ) +((Ry + Ry )+(Rs + Ry )—2R,)
a3zg _ N3(p).

) bs, p° +bg1 P+ by B D3 (p)’
We find current original iz having applicated to it operational image the expansion

theorem
_NZ(po)epot+2ReN2(p1)ep1t:aA+2Re 285, Py + 8y __E
3b,, p12 +2byp; +byy  Ri+Rg

" D3(pp) Dy(p) by
1" (CLuc (0) + Li (0)CR,) + py((Ry + Ry JCuc (0) +
+Li_ (0)+CR,(E—uc(0))+E

3p,°LC(Ry +Ry)+ py(L+C(Ry + R, (Rs + Ry ) R3) +

+((Ry + Ry )+ (Rg + Ry) - 2Ry)

We find the roots of polynomial

D, (p)=p*LC(Rs + Ry )+ p(L+C(Ry + R, (Rs + Ry )~ R3) +

+((Ry +Ry)+ (R + Ry) - 2Ry)

Po =0; py, =—1749+ j5502.

After substitute the roots value and the accentuations of real part we shall receive
i =1,98—0,62e *9sin(5502t +7,39°), A

+ 2Re



Task solving by variable states method.

As the component of the vector of variable states choose current in inductance and
voltage on capacitance. Relatively chosen variable states under second Kirchhgof's
law compose the equations of relatively independent contours

i du di
E=i R +CR, —C + U~ + L—L:
LM 2 4t C at
du ) du
CR,—< +u. =i, —C—X |Ry;
2 4t C (L dtj 3

From the equations system we separate out explicitly equations in normal Cauchy's

form
duc i Rg—u |
dt  C(R, +Rg)’

_(iLR3 —Uuc)R,

dt L L(R, + Rs)

From differential equations we pass on to incremental equations

Auc _ I Rg—u
At C(R, +Rj3)’
Ry (ILRs—Uc)R,

At L L" L(R,+Rs)

By the first order Euler,s method we shall integrate the received equations system
(x — the integrating running interval of ; k-1 — the previous interval of integrating;

At — integrating step).

I 1Rs — U4

AUcy =Uck —Uck-1 Z(

C(R; +R3)
E uyxs: R
AIL_ILk_ILk—l_(I_%_TlI

Lk-1

jAt

~ (IgaRs —Ug-1)Ry
L(R, + R3)

jAt;

The more exact integrating method there is Runge-Kutt method, which actualized
in environment of MathCAD. The printout of the algorithm of the calculation of
transient by the variable states method in environment of MathCAD, is present on

Fig. 3.8.



circuit with two energy storages

The calculation of transient by the variable states method in linear
The circuit parameters initial value assignment (Fig. 15)

® R1=01 R3=1C
,

E=20 L=10 ° C=3x 10
3 TP pT-75x 107

DT=——

R4:=1C R2:=0.1 TP:=3-10 2000
where TP — the transient account time which is equal to five of transient
constant time
Determining of independent initial conditions under the commutation

laws
I0=0.995 UCO=10-(R3+ R4 UCO=19.9

E

o= RizRa: RD
The assignment values of initial condition to the state vector
Ucoj

Matrix of derivative states variable on energy storages
X R3-%

C-(R2+ R3

_____ Rl _(xl-R3—>gO)-R2
L T L-(R2+ R3
Digital integrating the derivative states variable by the Runge-Kutt

method with constant integrating step t DT
Z:= rkfixed(x,O,TP, E , D)
DT
n = 0.. 400(

Capacitance voltage and induction current in the functions of time

2.5
s
£,
e

22
2r k
i ",
r

\ .
Z(n,2)1.5

201

2x107°  3x10°°

Z(n,1)

0
Z(n,0)

]

1 f
8y |/

1 f

1 f

!

0.5
1x10~3

16
1x10° 2x107% 3x107°

Z(n,0)

Fig. 3.8.



3.5. The circuit parameters calculation of transients at action in the
circuit of power supply with the arbitrary form of output signal

At the power supply output signal arbitrary form calculation is performed on basis
of the circuit input signal piecewise-linear approximation and the reaction search
of circuit with using of Duhamel integral.

Fig. 3.9

Task.
It is Given electric circuit, Fig. 3.9.a, on input which acts current source,
output signal of one Jg(t) changes according to given law Fig. 3.9.b.

There is necessary determining law of current and voltage variation in the
circuit branches

Task solving.

In order to take advantage of Duhamel integral there is necessary
described the circuit input current. The output signal of current source,
according to the graph Fig. 3.9.b

Jg1(t) =0,nmpu_t<Q;

Jo,@® = 2+ by mpu_o<t <ty
vy
Jss(t) = A,npu_tl St<t2,

t—t,

Js4(t):A+(é—A) ,npu_t2 St<t3,
2 Vt-t,
Jss(t) = O,npu_t 21:3

We find transients by classical approach




L L
i (t) = Js (O =i, (t) = Js (¢ Jsz(t)[l—em]— S(t)[ te R J

Normolized transient functions find from the action of current source with output
current single value (Jg(t)=1, A)
L

L
||_(t)—J—(t)[ eZR]u (t) = Ldlét(t) ﬁe_mt,

hl(t)—ﬁ—l[l— = } hy (t) =+ Wb _ L, 2|_Rt;hs,('[)Z L0, —l[l+e2l_Rt}

Js(t) 2 Js() 4R Jst) 2
We shall notice that the normolized transient functions h(t),hs(t) dimensionless,

function h,(t) has of dimension of resistance, that is why it is called by transient

resistance which changes in the time functions in this case according to
exponential law.

We find of electric circuit currents and voltages on the sections of piecewise-linear
approximation input current with using of Duhamel integral

y(t) =h(t)-J5(0) +:j)h(t —X)Jg (x)dx,

where y(t)— desired quantity circuit branch reaction; x — integrating parameter;
h(t — x) - shifted normolized transient function; Jg(x) — derivative from input

signal over the integrating parameter Xx.
For researched circuit Fig. 4.2, having in the time period 0<t <t; source current in

t=0 stepwise increases from null value till value 4/2, and then linearly increases till
value A4 as to given law Jg,(t)

O<t<t;ds(t)=2(+L):
2Ty

i () =hy(t)- JSZ(O)+jh1(t—x)J82(x)dx__ _{1 ethj

t - (t— —Lt _L
+I11 ( DAL A L e r ], AL, =1 2R A(ZR()_l):
02 2, 4 4t, 2° L 2t

4 4, 2 L 2t

On the second approximation stage t; <t <t, input current is given by function
Jg5(t) and continues the circuit reaction on influence Jg,(t)

L
:_A.[l_eZFet]+At EZ_RA(]__ _ﬁ( ))



tl
i (t)=hy(ty) - Js2(0) + (J;hl(t —X) o (X)dx + hy (t —t1) - (Js3(ty) — Isa (1)) +

; 2 L2t

Because is absent the stepwise action at the time moment t=t; and does not
change input action on time t; <t <t, that circuit reaction is determined by action

which was on the previous interval of approximation.
On the third section of approximation input signal begins to decrease from value 4
till value 4/2 under the law Jg5(t)

tl
i () =hy(ty) - Js,(0) + (f)hl(t — X)J s (x)dx +

1

F _Ltl —L t,
+Jh1(t—x)3é3(><)d><=/7:-{1—e 2R ]+§+12—Rﬁ(1—e 28! )).

tZ
+h(t—1) - (Jsa(ty) — Isa(ty)) + [hy(t = x) sz (X)dx +
tl

+h(t—13) - (Jsa(ty) — Jss(tz)) + .t[hl(t —X)J g4 (x)dx =
{

2

L L L
-t -t - t-t,
=§-[l—e 2R ]+A+EZ_RA(1_9 2R( ))+(_é 1 j(t_tz)Jrlz_Re 2R

4 2 L2 2 L

On the fourth section of approximation continue to act current and
voltage transient functions from action at previous time sections and add
negative current stepwise at the moment t=t,

t
i (1) =h () JIs2(0) +£h1(t— X)J g, (X)dx +
tZ
+h(t-1)-(Jss(ty) - Jsz(t1))+tf1h1(t— X)J 53 (x)dx +

t3
+h(t—1t5) (Jsa(tz) = Isa(tz)) + [h(t—X) I g4 (X)dx +

2

hy(t=ts)- (s (t2)= sa o))+ u(t— )3 (10

L

" R —t,t,
11—e 2R +é+12RA(1_e ZR(tl))Jr Al (t3—t2)+lge 2R° 7 —
42 4t,—t, 2 L

2 L
_A_. 1-e 2R(t b )
8

A
4



The branches reactions rest are calculated similarly as to mentioned algorithm.

3.6. The personal computative-graphic task “The calculation of
transients in linear circuits”

The personal job consists of three tasks. The first task envisages the calculation of
transient function by classical approach in circuits with have two energy storages,
second task — calculation this transient function by operational method and third —
calculation of transient function in circuits with one energy storage at arbitrary
form of energy source output signal.

Tasks 1, 2. B In electric circuit Fig.3.10-3.29 perform commutation. In circuit
there is act DC EMF E. The parameters of circuit are given in Table 3.1. Is needed
determine in time the law of variation transient function after commutation
moment in one of the scheme branche. Task to decide by two methods: classic and
operational. On the grounds of finded analytic expression for transient function to
build the graph of the found value change on interval beginning from the
commutation moment and till the value of time determined 5 maximal time
constant, when natural component to decline till 99% from initial value.

Guidance.

1. Equation for the operational images of scheme Fig.3.11 is recommended
compose as to the method of node potentials with allowance for having in the
scheme of energy sources and unnull initial condition.

2. In scheme Fig.3.20, with the purpose of the composing simplification of
characteristically equation and equations for operational images the left scheme
contour E,R;,R,,R; is recommended in calculations to replace by equivalent

power supply with inner ideal power supply and inner resistance.
' Ry R3

—

Ry

l ;\
;U_.
| —
eed.







Fig. 3.23



Fig. 3.28 Fig. 3.29

Task 3. There is given electric scheme, Fig.3.30-3.35, on input one which acts
voltage that changed in time as to known law u,(t). Is needed to determine law of

current variation in one of the scheme branches or variation voltage on the given
scheme district . In Table 3.2 according to the number of variant is specified the



number of picture, on which is showing the input voltage graph change in the time,
Fig.3.36-3.45. The circuit parameters R,L,C are given generally type.

Task is needed to decide with the help of Duhamel integral . Desired quantity
follows to determine (to write down its analytic expression) for all time tintervals.
Depending on statement of problems complete answer will comprise two or three
summand, each of which is correct only in the definite borders of the change of
time t.

In every answer follows to fulfil the adduction of similar members relatively of

coefficients e',e™" t and separate the constant component.

Note. On Fig.3.40, 3.41, 3.45 input voltage is given with two indexes. The first
index (index 1) points at input voltage, second index (1 or 2) _ on the time interval
to which belongs input voltage. It is so, for example, u;; — input voltage for the

first time interval, uy, — input voltage for the second time interval.




-——— -

Fig. 3.36

Fig. 3.37

A

Fig. 3.31



Table 3.1

. . L lc IR,[R, ][Ry | Ry .
Variant | Figure (E,V | v | 2 ohlm oh2m oh?;n oh?n Define

01 3.14 100 1 10 20 15 5 2 i
02 3.11 150 2 5 8 10 5 2 I
03 3.28 100 1 10 2 2 0 0 I
04 3.19 120 1 10 3 0 1 1 Ic
05 3.12 100 5 50 2 8 6 0 I
06 3.10 50 1 1500 2 13 1 4 I
07 3.20 120 10 10 10 90 | 1000 | 1000 I
08 3.27 200 1 20 4 4 2 0 I
09 3.13 100 1 10 50 25 25 0 Uc
10 3.26 300 5 4 10 20 10 20 Uc




Continue of Table 3.1

. . L |]cC IR,IR,]| R, R, .
Variant | Figure [E,V | v | 2 ohlm oh2m oh?;n ohl;n Define
11 329 |100]| 1 | 10 | 20 | 4 | 16 | 2 Ury
12 3.24 150 4 5 6 10 5 4 Uc
13 3.15 30 1 205 10 10 10 0 Uc
14 3.16 200 10 10 100 0 50 100 I

15 3.21 100 1 10 10 10 4 0 I
16 3.25 50 2 1670 1 2 1 5 I
17 3.17 120 10 10 10 90 | 1000 | 1000 I
18 3.22 120 1 10 8 8 8 4 Ic
19 3.18 200 1 10 10 20 50 20 I
20 3.23 50 1 100 2 8 10 10 I
21 3.14 100 1 10 20 20 0 2 u.
22 3.11 150 2 5 5 10 5 5 Ic
23 328 |100| 1 |10 ] 1| 3] 0 | o in
24 3.19 120 1 10 1 2 1 1 I
25 3.12 100 5 50 3 8 5 0 Uc
26 310 | 50 | L |1500] 2 | 13 | 2 | 3 i
27 3.20 120 10 10 20 80 | 1000 | 1000 Ic
28 3.27 200 1 20 6 3 2 0 I
29 3.13 100 1 10 50 20 30 0 UL
30 3.26 300 5 4 15 20 5 20 Ic
31 3.29 100 1 10 20 17 3 2 I
32 3.24 150 4 5 9 10 5 1 up
33 3.15 30 1 2,5 5 10 15 0 I
34 316 |200] 10 | 10 | 50 | 50 | 50 | 200 | Urs
35 3.21 100 1 10 5 15 4 0 u.
36 3.25 50 2 1670 1 2 3 3 Upo
37 3.17 120 | 10 10 20 80 | 1000 | 1000 i
38 3.22 120 1 10 12 6 8 4 I
39 3.18 200 1 10 10 10 50 30 Ic
41 3.14 100 1 10 20 2 18 2 Uc
42 3.11 150 2 5 4 10 5 6 IR
43 3.28 100 1 10 15 2,5 0 0 Ic




Continue of Table 3.1

. . L ] cC IR, IR, ]| R, R, .
Variant | Figure [E,V | v | 2 ohlm oh2m oh?n oh?n Define
44 3.19 120 1 10 2 1 1 1 UR»
45 3.12 100 5 50 6 8 2 0 I
46 3.10 50 1 1500 2 13 3 2 u_
47 3.20 120 | 10 10 30 70 | 1000 | 1000 I
48 3.27 200 1 20 12 2,4 2 0 Ic
49 3.13 100 1 10 50 10 40 0 I
50 3.26 300 5 4 3 20 17 20 I
51 3.29 100 1 10 20 8 12 2 u_

52 3.24 150 4 5 0 10 5 10 i

53 3.15 30 1 2,5 15 10 5 0 I

54 3.16 200 | 10 10 25 75 50 100 Uc
55 3.21 100 1 10 15 5 4 0 Ic
56 3.25 50 2 1670 1 2 3 3 u_
57 3.17 120 | 10 10 30 70 | 1000 | 1000 Ig
58 3.22 120 1 10 24 4,8 8 4 I
59 3.18 200 1 10 10 25 50 15 i

60 3.23 50 1 100 4 6 10 10 IR
61 3.14 100 1 10 20 10 10 2 Uc
62 3.11 150 2 5 7 10 5 3 u.
63 3.28 100 1 10 3 1 0 0 UL
64 3.19 120 1 10 15 15 1 1 u.
65 3.12 100 5 50 3 8 5 0 Uc
66 3.10 50 1 1500 2 13 4 1 i

67 3.20 120 10 10 40 60 | 1000 | 1000 u.
68 3.27 200 1 20 3 6 2 0 u_
69 3.13 100 1 10 50 30 20 0 i

70 3.26 300 5 4 6 20 14 20 up
71 3.29 100 1 10 20 11 9 2 Uc
12 3.24 150 4 5 3 10 5 7 Ic
73 3.15 30 1 2,5 12 10 8 0 Ic
74 3.16 200 10 10 0 100 50 100 u_
75 3.21 100 1 10 15 5 4 0 Ic
76 3.25 50 2 1670 1 2 4 2 Uc




Continue of Table 3.1

. . L ] cC IR, IR, ]| R, R, .
Variant | Figure (E,V | v | 2 ohlm oh2m oh?;n oh?n Define

77 3.17 120 | 10 10 40 60 | 1000 | 1000 ug
78 3.22 120 1 10 6 12 8 4 Uc
79 3.18 200 1 10 10 30 50 10 u_
80 3.23 50 1 100 5 5 10 10 up
81 3.14 100 1 10 20 16 4 2 URa
82 3.11 150 2 5 10 10 5 0 Uc
83 3.28 100 1 10 4 0 0 0 Uc
84 310 |120] 1 |10 ] o | 3 | 1 | 1 Ue
85 3.12 100 5 50 4 8 4 0 up
86 3.10 50 1 1500 2 13 5 0 Urg
87 3.20 120 10 10 50 50 | 1000 | 1000 Uc
88 3.27 200 1 20 4 4 2 0 Uc
89 3.13 100 1 10 50 35 15 0 Ic
90 3.26 300 5 4 4 20 16 20 Urg
91 3.29 100 1 10 20 13 7 2 Ic
92 3.24 150 4 5 2 10 5 8 Ugry
93 3.15 30 1 2,5 8 10 12 0 up
94 3.16 200 | 10 10 75 25 50 100 URr3
95 3.21 100 1 10 13 7 4 0 Ugr3
96 3.25 50 2 1670 1 2 5 1 Ugg
97 3.17 120 10 10 50 50 | 1000 | 1000 Uc
98 3.22 120 10 8 8 8 4 u_
99 3.18 200 10 10 18 50 22 Uc
00 3.23 50 100 6 4 10 10 Uc




Input

Variant | Scheme | voltage Variant Scr;em
graph
01 3.32 3.36 36 3.33
02 3.31 3.36 37 3.32
03 3.33 3.36 38 3.35
04 3.32 3.38 39 3.32
05 3.30 3.36 40 3.32
06 3.31 3.37 41 3.32
07 3.33 3.40 42 3.31
08 3.34 3.36 43 3.31
09 3.34 3.39 44 3.34
10 3.30 3.37 45 3.30
11 3.33 3.36 46 3.31
12 3.31 3.36 47 3.33
13 3.34 3.36 48 3.34
14 3.31 3.36 49 3.34
15 3.34 3.37 50 3.30
16 3.33 3.37 51 3.33
17 3.32 3.43 ) 52 3.31
18 3.35 3.40 (t) 53 3.34
19 3.32 3.36 i (t) 54 3.31
20 3.32 3.36 is(t) 55 3.34
21 3.32 3.37 ig(t) 56 3.31
22 3.31 3.39 Riy () 57 3.44
23 3.33 3.39 Ris(t) 58 3.35
24 3.32 3.39 ip (t) 59 3.32
25 3.30 3.37 iy (t) 60 3.32
26 3.31 3.38 i (t) 61 3.32
27 3.33 3.41 ip (t) 62 3.31
28 3.34 3.40 iy (t) 63 3.33
29 4.34 3.41 i (t) 64 3.32
30 3.30 3.38 u (t) 65 3.30
31 3.33 3.39 Ris(t) 66 3.31
32 3.31 3.44 is(t) 67 3.33




Continue of Table 3.2

Input Input
Variant | Scheme | voltage Define | Variant | Scheme | voltage | Define
graph graph

33 3.34 3.39 i(t) 68 3.34 3.45 iy (t)
34 3.31 3.39 uc(t) 69 3.34 3.42 i, (t)
35 3.34 3.38 u (t) 70 3.30 3.42 u ()
71 3.33 3.43 Ris(t) 86 3.31 3.42 i, (t)
72 3.31 3.42 i(t) 87 3.33 3.42 iy (t)
73 3.34 3.44 is(t) 88 3.34 3.42 iy (t)
74 3.31 3.40 uc (t) 89 3.34 3.43 i (t)
75 3.34 3.40 u (t) 90 3.30 3.44 u (t)
76 3.33 3.40 i(t) 91 3.33 340 | Ris(t)
77 3.32 3.44 uc (t) 92 3.31 3.43 is(t)
78 3.35 3.43 Uy(t) 93 3.34 3.45 i (t)
79 3.32 3.41 i, (t) 94 3.31 3.42 uc(t)
80 3.32 3.42 i(t) 95 3.34 3.41 u (t)
81 3.32 3.43 iy () 96 3.33 3.41 i (t)
82 3.31 3.43 Riy (t) 97 3.32 3.36 uc (t)
83 3.33 3.44 Ris (t) 98 3.35 3.36 U, (t)
84 3.32 3.42 iy (t) 99 3.32 3.45 i (t)
85 3.30 3.45 iy (t) 00 3.32 3.43 i5(t)

3.7. Questions for one's own checking as to the calculation methods
of transients in linear circuits

1. Find current value across capacitor at moment of commutation (t=0), if applied
voltage is U=80 V, and R1=2 2, R2=8Q, R3=6 Q.

¥

U=150 B, R1=10 Q, R2=R3=5 Q.

3 R2
c

u R1 R
7— —7—

2. Find current value through resister R2 at moment of commutation (t=0), if

=1,




3. Find current value through resistor R2 at moment of commutation (t=0), if
U=150 V, R1=10 Q, R2=5 O, R3=5 Q.

R1
u R Ijs
2

4. Find current value through resistor R1 at moment of commutation (t=0), if
U=150 V, R1=10 Q,R2=5 Q, R3=5Q.
R1

u R S
F

5. Find current value through resister R1 at moment of commutation (t=0), if
U=150 V, R1=10 , R2=5 Q, R3=5 Q.

R1
u R Ijs
F

6. Find current value through resister R1 at moment of commutation (t=0), if =10

A, R=R1=10 Q. . :
- S ——
R IT

7. Find current value through resister R1 at moment of commutation (t=0), if 1=10

A,RI=R=10 Q.
I S [

‘ % R RT |-Re

R C

8. Find current value through capacitor at moment of commutation (t=0), if
applied current is I=10 A; and R=10 Q.

: S
R R
R c
9. Find current value through capacitor at moment of commutation (t=0), if applied
current is I=10 A; and R=10 Q.

| Jesn

10. Find current value through capacitor at moment of commutation (t=0), if
applied voltage is U=80 V, and R1=2 0, R2=8 Q, R3=6 Q.



T o[z s
Ul R1TIIR3HR2 - 8

Jrg
11. Find current value through capacitor at moment of commutation (t=0), if
applied voltage is U=80 V, and R1=2 Q, R2=8 O, R3=6 Q.

T c R3|R2 . s
Ul R \R2
| R Loyl

12. Find current value through resistor R3 at moment of commutation (t=0), if
applied voltage is U=80 V, and R1=2 O, R2=8 2, R3=6 Q.

o
U l R1 C"RS"RE#*S

LF
13. Find current value through resistor R3 at moment of commutation (t=0), if
applied voltage is U=80 V, and R1=2 O, R2=8 Q, R3=6 Q.

i ez s ]
u | R1’_TC"R3HR2 . 8

=
14. Find current value through resistor R1 at moment of commutation (t=0), if

applied voltage is U=80 V, and R1=2 O, R2=8 2, R3=6 Q.
7—] >—T—|:I—ﬂ
u i R1 C "R3HR2 . 8

15. Find current value across resistor R1 at moment of commutation (t=0), if
applied voltage is U=80 V, and R1=2 O, R2=8 2, R3=6 Q.

e
ui R1 C"R3FR2HS

=
16. Define current value across resistor R2 at moment of commutation (t=0), if 1=1

A, RO=R2=2 Q, R1=8 Q, R3=90 Q.

I S
R L

R3

Ro
R4

17. Define current value through resistor R2 at moment of commutation (t=0), if
I=1 A, R0=R2=2 O, R1=8 Q, R3=90 Q.

I ) R
" E:gﬁ 2 3
Ro R L
Ra




18. Find voltage value across inductance y, (0) at moment of commutation (t=0),
if =1 A, RO=R2=2 O, R1=8 Q, R=3,9 Q.

r%ant:ﬁ

19. Find voltage value across inductance UL at moment of commutation (t=0),
if =1 A, R0O=R2=2Q, R1=8 O, R3=8 Q.

20. Find voltage value over inductance y, (0) at moment of commutation (t=0), if
U=160 V, R1=8Q, R2=3 Q, R3=6 Q.

L Ry s |
Ul Rq)—ERF%’ &

21. Find voltage value across inductance uL(O) at moment of commutation (t=0),
if U=160 V, R1=8Q, R2=3 Q, R3=6 Q.

Ul L R, RZ, S |

' R

22. Define current value through resistor R1 at moment of commutation (t=0), if
U=160 V, R1=8 Q, R2=3 Q, R3=6 Q.

Ul L R, R%' S |

! R

23. Define current value through resistor R3 at moment of commutation (t=0), if
U=160 V, R1=8 Q, R2=3 Q, R3=6 Q.

R: S
UT R4 L 2,
e R
24. Define current value through resistor R3 at moment of commutation (t=0), if
U=160 V, R1=8 Q, R2=3 O, R3=6 Q.

£Y

£1

R S
UT R4 L 2
e R
25. Define current value through resistor R2 at moment of commutation (t=0), if
U=160 V, R1=8 Q, R2=3 Q, R3=6 Q.

UT R4

L
R

R% )

I



26. Find the constant time  of transient process if given: R1=2 Q, R2=8 Q,
R3=6 Q, C=10 uF .

R1 R3 R2
o

27. Find the constant time 7 of transient process if given: R1=2 Q, R2=8 Q,
R3=6 Q, C=10 uF .
R1 R3 R2

o i

C Ll I

28. Find the constant time r of transient process if given: R0O=R2=2 Q, R1=8 Q,
R3=90 Q, L=100 mH.

I S R
‘ E“§) . 3
Ro R L
R4

29. Find the constant time r of transient process if given: R0=R2=2 0, R1=8 Q,
R3=90 Q, L=100 mH,

I S R
’ (:éa . 3
Ro R L
R

30. Find the constant time r of transient process if given: R1=8 Q, R2=3 Q,
R3=6 Q, L=100 mH.

Ul L R, R%' ) |
e




Apendixes.

Appendix A. Fourier series of Functions with Periodicity 2z

Graphics of Functions Fourier Series

At o : :
f(wt) = ﬂ(smocsm ot + 1sm 3asin3wt +
T 27 ar 9
0 ot 1 . i 1 . i
+ —sin5asin5at + —sin7asin 7wt +...)
AT 25 49
(04
A__
_ . f () = 22 (sin —%sin 30t +

0 \/ o 1 i 1
AT +——sin5awt ——sin 7wt +...)
25 49

4A , . 1.
T o0 f(wt) = 7(sm wt + §sm 3wt +

o
Sv

AT +lsin5wt+lsin7a)t+...)
5 7




A — : :
f(a)t):ﬁ(sma—”cosa)ulsm?’a—”cos%
4 27 m 2 3 2
4 | wt _ _
al + 1sm 50[—7[c035a)t + 1S|n70[—7[cos7a)t +...)
-A 5 2 7 2
ar
A
\ / f(a)t):Z—A(1+£cosa)t+ic052a)t—
1 27, T 2 4 1.3
0 ; wt 1 1
' / — ——cos4wt + ——cosbat —...)
-A 3-5 5.7

f(wt) = ﬁ(% + ﬁcosZa}t - 3—150084a)t +
72' . .

+icos6a)t —LCOSSG)'[ —...)
5.7 .




Appendix B. A short table of Laplace transforms, in each case p is assumed to be
sufficiently large that the transform exists.

f(t) F(p) = L[f(V)] f(t) F(p) = L[f(D)]
1 1/p J(t) !
t 1/ p? 5t — ¢) e Pe
n!
t" ol &'(t-c) pe P
pat 1 u(t-rc) ie—pc
p-—a P
1 n _
tedt (p_a)z (t_C)nu(t_C) pn+1e >
n! n! -
theat (p—a)”“ (t—C)nea(t_C)U(t—C) (p_a)n+1e a
] w . w -pc
sin wt p2 P sin w(t — ou(t — ¢) p2 AP e
COS wt p2 sz cosh a(r — cu(r — ¢) p2 ﬁaz g~ PC
: a - : @ __cothPZ
sinh at 0% 1 a2 sin wt of period 7/w 0% 1+ o co o
W 1 p—a
at o; = (ed — e In
e®'sin wt (p-2a) + @ t( ) D—b
p-a 2 p? —a?
at Z(-coshat In
e?'cos wt (p-2a) + @ t( ) 02
20p 2 2 432
t sin ot s oV —(1—cosat) in 2 +2a
(p? +0?) t p
1 - cos mf w0’ sin wt tan~L w
J— a) -
‘pz + w? jp t p
_ > _ 20°
wt - SIn wt SIN wt- wt CoS wt T v
(pz +a)2)p2 (pz +a)2)2
_ 202 b2 _ a2
sin wt +ot cos =P c08 af — cos bt 2( : 2)IO :
ot (02 +0?) (p® +a%)(p? +b?)




BIBLIOGRAPHY

1. becconoB JI.A. TeopeTnueckre OCHOBBI 3JIEKTPOTEXHUKHU. DIEKTPUUECKUE
nend. — M.: Beicmmasg mkona, 1996. — 638 c.

2. OcuoBsl Teopun 1ieniedt /I'.B. 3eBexke, [1.A. Moukun, A.B. Herymmun, C.B.

CrpaxoB. — M.: Dueproaromuszaart, 1989.— 528 c.

3. Heitman JI.P., lemupusin K.C. Teopernueckne OCHOBBI AIEKTPOTEXHUKH. T.1 —
JI.: Oueprousnar, 1981. — 536 c.

4. AtabekoB I'.W. Teopernueckre OCHOBBI JIeKTpoTeXHUKHU. Y.1. — M.: DHeprus,

1978. — 592 c.

5. lllebec M.P. Teopust TMHEHHBIX ANEKTPUUECKUX LIETICH B YIPAKHEHUSIX U

3amadax. — M.: Breiciias mkoia, 1967. — 478 c.

6. Karumstackuit ALE., JIsicerko A.IL., [TonoroBckwmii JI.C. TeopeTnueckre OCHOBBI

AMEKTPOTEeXHTKU. M. Brictmast mikoma. —1972. 448 c.



m

A

XinoB Bikrop CepriiioBnu

METOAUYHI BKA3IBKU
I KOHTPOJIBHI 3ABJIAHHS K IPAKTUYHUM 3AHATTAM
3 TUCHMILTIHA
“TeopeTH4Hi 0CHOBH €JIEKTPOTEXHIKN”

(modyai 3 i4)

JUJIsl CTYICHTIB JICHHOI 1 3204HO1 JOpM HaBYAHHS 32 HAMPSIMKAMHU MiATOTOBKHU
6.050702 Enextpomexanika, 6.050701 EnexTpoTexHika Ta eIeKTPOTEXHOIOTIT

Komn’tomepHhuii dusatin B.C. Xinosea

[Tinnucano no apyky . . . Dopmar 30 x 42/4.
[Tamip odcet. Puzorpadis. Ym. npyk. apk. 4,0.
OO6n.-Bum. apk. 4,0. Tupaxx npum. 3am. No

HayioHaabHull eipHuvuil yHisepcumem

49005, m. JIninporneTpoBchK, mpocn. K. Mapkca, 19.



