
TFEE-1 (Practical) 
 

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE 

 

Dnipro University of Technology 

 

 
 

Department of Electrical Engineering 

 

 

 
 

 

V.S. KHILOV  

 

Guidelines to independent and practical works on discipline 

THEORETICAL FUNDAMENTALS OF ELECTRICAL ENGINEERING 

For full-time students’ majoring in 141 "Electric Power, Electrical 

Engineering and Electromechanical" 

 

Part 2 

THREE–PHASE CIRCUITS, POLYHARMONICAL VOLTAGES AND 

CURRENTS IN CIRCUIT, TRANSIENT ANALISIS OF A LINEAR 

CIRCUITS 

 

 
 

 

 

Dnipro 

2021 



Рекомендовано до видання навчально-методичним 

відділом (протокол №    від          за поданням науково-

методичної комісії зі спеціальності 141 – 

Електроенергетика, електротехніка та 

електромеханіка (протокол № 21/22-01 від 30.08.2021 р.)  

 

 

 

Методичні вказівки до самостійних та практичних занять і контрольні 

завдання з дисципліни "Теоретичні основи електротехніки" (частина 2, 

розділи “Трифазні кола”, “Полігармонічні струми й напруги у однофазніх і 

трифазних колах”, “Перехідні процеси у лінійних електричних колах”) для 

студентів денної та заочної форм навчання за спеціальностями: 141 

Електроенергетика, електротехніка та електромеханіка / В.С. Хілов – Дніпро: 

Національний технічний університет “Дніпровська політехніка” 2021. - 99 p. 

 

 

 

 

Автор: В. С. Хілов, д-р техн. наук, професор. 

 

 

 

 

 

 

Методичні вказівки призначено для виконання самостійної роботи і 

контрольних завдань та проведення практичних занять з дисципліни 

"Теоретичні основи електротехніки" (частина 2, розділи “Трифазні кола”, 

“Полігармонічні струми й напруги у однофазніх і трифазних колах”, 

“Перехідні процеси у лінійних електричних колах”) студентами денної та 

заочної форм навчання за спеціальностями: 141 Електроенергетика, 

електротехніка та електромеханіка. 

У кожному розділі подано короткі методичні вказівки, типові завдання з 

рішенням та необхідними поясненнями, а також вихідні дані для виконання 

самостійно студентами розрахунково-графічних завдань. Наводяться питання 

для самостійного контролю залишкових знань. 
 

 

 

Друкується в редакції автора. 

 

  

© Хілов В.С. 2021.  

© НТУ «Дніпровська політехніка», 2021 



1. BASIC THEORY OF THE DC ELECTRIC CIRCUIT 
 

 

 

 

Table of Contents PART 2, MODULUS 3, 4 

 
 FOREWORD 7 

1 THE CALCULATION METHODS  OF ELECTRIC THREE-

PHASE CIRCUITS WITHIN HARMONIC VOLTAGES AND 

CURRENTS 

6 

1.1 Study guides as to the calculation of three-phase harmonic 

circuits 

 

1.2 The calculation of the circuit parameters at the load gather in 

symmetrical delta connection 

9 

1.3 The circuit parameters calculation at the load gather in non-

symmetrical Y-connection  

 

1.4 The circuit parameters calculation at the load gather in non-

symmetrical Y-connection as to three-wire and four-wire 

schemes 

11 

1.5 The circuit parameters calculation at the load gather in non-

symmetrical Y-connection 

12 

1.6 The circuit parameters calculation at the load gather in non-

symmetrical connection  and when there are impedances in 

lines 

14 

1.7 The personal computative-graphic task “The calculation 

parameters of three-phase circuit at harmonic voltages and 

currents” 

22 

1.8 Questions for one's own checking as to the calculation  

methods of three-phase harmonic circuits 

25 

2 THE CALCULATION METHODS  OF ELECTRIC SINGLE-

PHASE AND THREE-PHASE CIRCUITS WITHIN NON-

HARMONIC VOLTAGES AND CURRENTS 

29 

2.1 Study guides as to the calculation of single-phase non-

harmonic circuits 

26 

2.2 Study guides as to the calculation of three-phase non-harmonic 

circuits 

26 

2.2 Study guides as to the calculation of three-phase non-harmonic 

circuits  

33 

2.3 The circuit parameters calculation of single-phase non-

harmonic at resistance-capacitance in scheme 

35 

2.4 The single-phase non-harmonic circuit parameters calculation 

at series connection resistance-inductance-capacitance in 

scheme 

36 



2.5 The single-phase non-harmonic circuit parameters calculation 

at mixed connection resistance-inductance-capacitance in 

scheme 

37 

2.6 The three-phase non-harmonic circuit parameters calculation at 

the load gather in symmetrical Y-connection with the neutral 

wire 

41 

2.7 The three-phase non-harmonic circuit parameters calculation at 

the load gather in symmetrical delta-connection and when there 

are impedances in lines 

43 

2.8 Questions for one's own checking as to the calculation  

methods of single-phase circuits within non-harmonic voltages 

and currents  

46 

3 THE CALCULATION METHODS OF TRANSIENTS IN 

LINEAR CIRCUITS  

49 

3.1 Study guides as to the calculation of transients in linear circuits 49 

3.1 The circuit parameters calculation of transients in branched 

resistance-inductance circuit 

56 

3.2 The circuit parameters calculation of transients at mixed 

connection in resistance-capacitance circuit 

85 

3.3 The circuit parameters calculation of transients at mixed 

connection in resistance- inductance-capacitance circuit 

62 

3.4 The circuit parameters calculation of transients at action in the 

circuit of power supply with the arbitrary form of output signal 

90 

3.5 The personal computative-graphic task “The calculation of 

transients in linear circuits” 

99 

3.6 Questions for one's own checking as to the calculation  

methods of transients in linear circuits 

87 

 Appendixes  

 Appendix A. Fourier series of Functions with Periodicity 2π 92 

 Appendix В. A short table of Laplace transforms, in each case 

p is assumed to be sufficiently large that the transform exists. 

94 

 BIBLIOGRAPHY 95 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

FOREWORD 
In presented study guides (modulus 3, 4) as to the parameters calculation the of 

linear electric circuits include the methods of calculation: 

– three-phase schemes at harmonic voltages and currents; 

–  three-phase schemes at symmetric polyharmonical voltages and currents; 

– single-phase schemes at availability polyharmonical voltages and currents;  

– as well as of chains in the transient work regimes. 

This methodological instructions are the direct continuation of methodological 

instructions as to the calculation of DC circuits, of single-phase sinusoidal currents 

and voltages and magnetically coupled circuits (modulus 1, 2).  

The calculation basic method of the linear electric circuits parameters at presence 

high harmonics there is the superposition method which is based on Fourier 

analysis. Presence polyharmonical voltages and currents in electric circuits brings 

to the deterioration of electromagnetic energy using that quantitatively is  

connected with the decrease of the power coefficient and to the appearance of the 

additional distortion power. The distortion power is absent in circuits if curves of 

current and voltage completely similar to each other, that always is fulfiled in 

linear circuits at the presence of the sinusoidal sources of electromagnetic power. 

Unstationary or transient processes are calculated by methods there are classic, 

operational, of state variables or by method on basis of Duhamel integral using. 

The calculation of transient processes by classical approach is based on differential 

equations deciding with the laws of commutation and Kirchhoff's laws using. For 

complex electric circuits the most acceptable there is the calculation of transient 

processes by operational method, when differential equations in the real variable 

area are replaced by algebraic equations in the images area. If the graph of forcing 

action has piecewise-linear complex type, then circuit reaction determine by 

Duhamel integral using. Calculation by the method of state variable prefer to 

perform at the differential equations digital integrating. 

Before the concrete parameters of electric circuits calculation precede epitomize 

methodological instructions to which there are necessary follow at the calculation 

of computative-graphic individual task.  

In the every part end are presented typical questions at concrete tasks deciding. For 

the verification of the material learning degree for every student imperatively is 

recommended on one's own to decide indicated tasks. 

Accuracy and the correctness of fulfiled computative-graphic tasks are verified by 

the teachers of cycle and after the obviation of errors are assumed to interlocution. 

The interlocution according to the results of performed computative-graphic tasks 

presents there is dialog with teacher and answer toes set questions in the context of 

in question topic, or answers to test tasks. The results of interlocution  are 

estimated as to five mark scale. 

 



 

 

1. THE CALCULATION METHODS  OF ELECTRIC THREE-

PHASE CIRCUITS WITHIN HARMONIC VOLTAGES AND 

CURRENTS 
 

1.1. Study guides as to the calculation of three-phase harmonic 

circuits 
 

1. The symmetrical feed source and symmetrical load. 

1.1. Calculation three-phase circuit in symmetrical regime to add up to calculation 

for single-phase circuit and is fulfiled to similarly of calculation single-phase 

circuit. Any non-symmetric three-phase circuit can be considered as forked circuit 

with three sources feeds, for calculation its are applied methods which been used 

for the calculation of complex electric single-phase circuit. For example, for the 

case the junction of the generator and load phases by Y-connection without neutral 

wire at calculation currents and voltages can be applied the method of nodes 

voltage in phasor form. 

1.2. If three-phase symmetrical electric circuit is gathered as scheme of 

symmetrical Y-connected and whereat of the linear wires impedances excellent 

from zero, then follows to find the equivalent phase impedances, and then under 

the Ohm's law to find phase PI  (line current LI ) current PPP ZEI /= , where 

PE  there is source supply phase voltage; PZ  there is phase load impedance. Then 

under the Ohm's law be found phase voltages on circuit's load. In such schemes 

linear voltage modulus on load LU  in 3  times as much of phase voltage PU  

modulus ( LU = 3 PU ), and modulus of line and phase current there are equal 

LI = PI . 

1.3. If three-рhase symmetrical electric circuit is gathered as scheme of 

symmetrical delta-connected at condition that linear wires impedance excellent 

from zero, follows to transform the given connection of load impedances into 

equivalent Y-connection and determine linear currents according to stage 1.2 

instructions. The load phase currents at symmetrical delta-connected less than line 

currents in 3  times as much ( LI = 3 PI ), and line voltages on load equals to 

phase voltages LU = PU . The load phase voltages look for Ohm’s low. 

The load phase voltages be find under Ohm’s low PPP ZIU = . If the impedance 

of linear wires are neglect, then voltage on the phase of the feed source is  equal to 

voltage on the phase load PP UE = . 

1.4. At symmetrical load active, the reactive and apparent powers of three-phase 

system irrespective of the method of its connection (Y- or delta) is calculated on 

one phase and are tripled 

;cos3cos3 PLLPPp IUIUP  ==  



;sin3sin3 PLLPPp IUIUQ  ==  

.33 LLPp IUIUS ==  

1.5. So long as three-phase circuit there is sinusoidal current circuit that processes 

research into its perform by the same methods and admittances. For these circuts 

we may will apply the symbolic method of calculation, topographic voltages 

diagram and vector currents diagram which make calculations more visual. 

2. The symmetrical feed source and non-symmetrical load.  

2.1. In non-symmetrical three-phase circuits ( CBA ZZZ  )in that gathered the 

source and load phases by Y-connected and with the presence impedance in neutral 

wire follows to determine the neutral bias voltage (potentials different between the 

common points of source and load) NnU  (voltage between the common points of 

source and load) 

NnCBA

CCBBAA
Nn

YYYY

YEYEYE
U

+++

++
= , 

where CBA EEE ,,  there are phase voltages (EMF) on supply source; CBA YYY ,,  

there are phase conductivities of three-phase scheme branches; NnY  there is neutral 

wire conductivity. 

Into the conductivities of the branches phase are taken into account the wire line 

impedances. The load phase currents are determined under the Ohm's law 

;)( ANnAA YUEI −=  ;)( BNnBB YUEI −=  .)( CNnCC YUEI −=  

The current in neutral wire determine under the first Kirchhoff's law 

CBANn IIII ++=   или по закону Ома .NnNnNn YUI =  

2.2. If non-symmetric load, gathered by Y-connection and these is connecting to 

power supply without neutral wire and we known linear voltage of three-phase 

source, that load phase voltage find as to equations 

 ;
CBA

CCABAB
A

YYY

YUYU
U

++

−
=  ;

CBA

AABCBC
B

YYY

YUYU
U

++

−
=  

,
CBA

BBCACA
C

YYY

YUYU
U

++

−
=  

where CBA YYY ++  - took into account the conductions of linear wires at 

presence in it impedance. 

Current in the load phases find under the Ohm's law 

.;; CCCBBBAAA YUIYUIYUI ===  

2.3. At the load connection by delta, in case negligibly small wires impedance, the 

phase voltages of power supply and loads are  equal each to other, the phase 

currents in the load follows to determine under the Ohm's law, and currents in 

linear wires follows to determine under to the first Kirchhoff's law 

.;; BCCACABBCBCAABA IIIIIIIII −=−=−=  

2.4. At the impedances presence in linear wires follows to fulfil the equivalent 

transform the load connection from triangle into star. After that determine phase 



voltages in according to stage 2.2 instructions and linear currents under the Ohm's 

law 

.;; CCCBBBAAA YUIYUIYUI ===  

The load phase voltages of equivalent Y-connection also are determined under the 

Ohm's law  

.;; CNCCNBNBBNANAAN ZIUZIUZIU ===  

According to second Kirchhoff's law can determine the phase drop voltages on the 

load impedances at connection as triangle  

.;; ACCACBBCBAAB UUUUUUUUU −=−=−=  

Under the Ohm's law we determine load phase currents 

./;/;/ CACACABCBCBCABABAB ZUIZUIZUI ===  

2.5. Active and reactive powers are determined as sum of the active and reactive 

powers of the load phases, of the line wires and neutral wire 

;cos

coscoscos

NnNnNn

CCCBBBAAA

IU

IUIUIUP





+

+++=
 

.sin

sinsinsin

NnNnNn

CCCBBBAAA

IU

IUIUIUQ





+

+++=
 

An apparent power in non-symmetric load  

.22 QPS +=  

3. The non-symmetrical feed source and symmetrical load.  

3.1. Calculation is conducted on basis of the method symmetrical components. In 

the feed source EMF are separated out symmetrical components of zero, positive 

and negative phase-sequences.  

The zero phase-sequences EMF 

.; 0000 ACBCBAA EEEEEEE ==++=  

The positive phase-sequences EMF 

,;;
3

1
2

1

2

1 ACAB
CBA

A EaEEaE
EaEaE

E ==
++

=  

where  
01201 jea = - unit rotary multiplier. 

The negative phase-sequences EMF 

.;;
3

2
22

2

2 ACAB
CBA

A EaEEaE
EaEaE

E ==
++

=  

3.2. At the connection load's impedances in symmetrical star with impedance in 

neutral wire the phase currents symmetrical components are determined as 

.;
3

000
0

0 ACB
NnP

A
A III

ZZ

E
I ==

+
=  

,;; 111
2

1
1

1 ACAB
P

A
A IaIIaI

Z

E
I ===  



.;; 2
2

222
2

2 ACAB
P

A
A EaIIaI

Z

E
I ===  

3.3. At the connection load's impedances in symmetrical star without impedance in 

neutral wire the phase currents symmetrical components are determined as 

.;0 0000 ACBA IIII ===  

,;; 111
2

1
1

1 ACAB
P

A
A IaIIaI

Z

E
I ===  

.;; 2
2

222
2

2 ACAB
P

A
A EaIIaI

Z

E
I ===  

3.3. At the connection load's impedances in symmetrical triangle the phase currents 

symmetrical components are determined as 

.; 000
00

0 ADCABC
P

BA
AB III

Z

EE
I ==

−
=  

,;; 111
2

1
11

1 ABCAABBC
P

BA
AB IaIIaI

Z

EE
I ==

−
=  

.;; 2
2

222
22

2 ABCAABC
P

BA
AB EaIIaI

Z

EE
I ==

−
=  

3.4. Active and reactive powers at non-symmetrical feed source and symmetrical 

load are determined on basis of the method symmetrical components 

;cos3cos3cos3 000000000 CCCBBBAAA IUIUIUP  ++=  

;sin3sin3sin3 000000000 CCCBBBAAA IUIUIUQ  ++=  

An apparent power  

.22 QPS +=  

Voltages and current of zero phase-sequences having in own phases in every 

instant the same significance present single-phase current which equally divide 

between three phases of system. The presence of voltage and current zero phase-

sequences even in symmetrical load brings to the appearance the beatings of 

instant power, i.e. system to become unbalanced. 

  

1.2. The calculation of the circuit parameters at the load gather in 

symmetrical delta connection  
 

Task. Into three-phase circuit with linear voltage 220=LU V included load, which 

connected by triangle. The impedance in each phase is jZ 1010 += , Ohm (Fig. 

1.1). Find currents in each phase of load and line, calculate wattmeter indications. 

Draw a superpose vector diagrams of currents and voltages. 

Task solving. 

1. Calculation currents fulfil by symbolic method. We accept the vector of the 

linear voltage of three-phase the voltage source ABU  is furnished to real axis, and 

the impedance of linear wires neglected, that is why can write down 



00220 j
abAB eUU == В; 

0120220 j
bcBC eUU −== В; 

0120220 j
caCA eUU == В. 

We determine load phase currents 

ÎìejjeZUI jj
abAB

00 450 556,151111)1010/(220/ −
 =−=+== ; 

;556,15

026,4026,15)1010/(220/
00

0

120165

120

ÎìeIe

jjeZUI

j
AB

j

j
bcBC

−−

−


==

=−−=+==
 

.556,15

025,15026,4)1010/(220/
00

0

12075

120

ÎìeIe

jjeZUI

j
AB

j

j
caCA

==

=+=+== 
 

 

 
We find linear currents on the grounds of the first Kirchhoff's law 

.9,2602,1902,19

;9,2696,698,25

;9,2698,2596,6

12045

120195

75

0

AeIejIII

AeIejIII

AejIII

j
A

j
BCCAC

j
A

j
ABBCB

j
CAABA

==+=−=

==−−=−=

=−=−=

−−

−

 

We determine wattmeter indications 

;153045cos9,26220]9,26220Re[Re 0450
*

1

00

ÂòeeIUP jj
AAB ===








=  

;573015cos9,26220]9,26220Re[

]9,26220Re[Re

04560

45120
*

2

00

00

Âòee

eeIUP

jj

jj
CCB

===

=−=







=

−

−−

 

The circuit active power is determined the as algebraic sum of wattmeter 

indications, i.e.  

ÂòPPP 72605730153021 =+=+=  

or 

.726045cos9,262203cos3 0 WtIUP PLL ===    

The superpose vector diagrams of currents and voltages is given on Fig.1.2. 
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1.3. The circuit parameters calculation at the load gather in non-

symmetrical Y-connection  
 

Task.  

Calculate the parameters of electric circuit for the case of non-symmetric load. In 

four-wire three-phase scheme with linear voltage 220=LU  V the load 

impedances connected by star, the resistive and inductive phases resistance 

accordingly are  equal 

;4;3 == AA xR  ;2,5;3 == BB xR ;3;4 == CC xR  (Fig.1.3).  

Determine currents in linear and neutral wires and draw vector diagram. 

 
Task solving. 

We accept that vector of phase voltage AU  is  furnished to real axis, then 
00 00 1273/ jj

LA eeUU == В; 
01201270 j

B eU −= В; 
0120127 j

caC eUU == В. 

CI  

BI  

AI  

ABI  

ABU  

BCU  

BCI  

CAU  

CAI  

C, c 

B, b 

A, a 

Re 

Im 

Fig. 1.2 
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We find the linear currents: 

;4,25)44/(127/
053 AejZUI j

AAA
−=+==  

;2,21)2,53/(127/
00 180120 AejeZUI jj

BBB
−− =+==  

.4,25)34/(127/
00 83120 AejeZUI jj

CCC =+==

The current in neutral wire determine as sum 

of the phasor phases current 

.9,54,252,214,25
0000 1248318053 Aeeee

IIII

jjjj

CBAN

=++=

=++=

−−

At non-symmetricly load the active power 

find as sum of phase powers  

.77,586337cos4,25127

60cos2,2112753cos4,25127

cos

coscos

0

00

Wt

IU

IUIUP

CCC

BBBAAA

=+

++=

=+

++=





 

The superpose vector diagrams of currents 

and voltages is given on Fig.1.4. 
 

 

1.4. The circuit parameters calculation at the load gather in non-

symmetrical Y-connection as to three-wire and four-wire schemes 
 

Task. Three-wire circuit. 

 

 
In three-wire and three-phase scheme with linear voltage 380=LU  V the load 

impedances connected by star, the resistive, capacitive and inductive phases 

resistance accordingly are  equal: === 22CL xxR  (Fig.1.5). The neutral wire is 

absent. Determine currents in the load phases. Draw superpose vector diagram 

currents and voltages. 
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Task solving. 

Having chosen phase A as initial, we distribute the phase voltages of the 

symmetrical feed source on plane of complex numbers 
00 00 2203/ jj

LA eeUU == ,V; jeU j
B 191110220

0120 −−== −
,V;  

 jeU j
C 191110220

0120 +−== ,V. 

We determine voltage between the neutral points of the feed source and load (the 

neutral bias voltage) 

602

22

1

22

1

22

1

22

191110

22

191110

22

220

=

+
−

+

+−
+

−

−−
+

=
++

++
=

jj

j

j

j

j

YYY

YUYUYU
U

CBA

CCBBAA
Nn , V . 

We determine the voltage on the clamps of the load phases 
0180382382602220 j

NnAAn eUUU =−=−=−=  В;  
016517,737191712602191110 j

NnBBn ejjUUU −=−−=−−−=−=  В; 

 
016517,737191712602191110 j

NnCCn ejjUUU =+−=−+−=−=  В. 

We determine phase (linear) currents 
01803,173,17

22

382
)( j

ANnAA eYUUI =−=
−

=−= А;  

07554,334,3268,8
22

191712
)( j

BNnBB ej
j

j
YUUI −=−=

−

−−
=−=  А;  

07554,334,3268,8
22

191712
)( j

CNnCC ej
j

j
YUUI =+=

+−
=−=  А. 

At non-symmetrical load the active power find as sum of phase 

powers

.74,18060

195cos54,33220

195cos54,33220

180cos3,17220

cos

cos

cos

0

0

0

Wt

IU
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The superpose vector 

diagrams of currents and 

voltages is given on 

Fig.1.6. 
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Task.  

Four-wire circuit. 

For the conditions of previous task (Fig. 1.5 three-wire circuit VU L 380= , 

=== 22CL xxR ), but at closing by the neutral wire points N  and n in scheme 

(Fig.1.7 four-wire circuit), currents in the phases of load to define. 

 

 
Task solving. 

We preserve accepted distribution of phase and linear voltages of the three-phase 

symmetric power supply. We preserve phase A as initial, distribute of phase 

voltages of the symmetrical feed source on plane of complex numbers 
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We determine voltage between the neutral points of the feed source and load (the 

neutral bias voltage) 
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Just like was awaited the voltage of bias neutral is  equal to zero, i.e. on complex 

plane the potentials of points N and n coincide, they are equipotentials. 

Voltages on the phases of load are  equal to voltages on the phases of the feed 

source 
002202200220 j
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We determine phase (linear) currents 
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Current in neutral wire we find as 

sum of the phases significances of 

phases current 
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Active power is allocated only in the 

phase A ohmic resistance 
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The superpose vector diagrams of 

currents and voltages is given on 

Fig.1.8. 

 

 

1.5. The circuit parameters calculation at the load gather in non-

symmetrical connection  and when there are impedances in lines 
 

Will calculate parameters of three-phase circuit at presence line impedances. 

Task.  

Non-symmetric three-phase circuit comprises symmetrical power supply, 

Fig.1.9. Calculation is simplified, if reduce the calculation to determining of the  
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scheme parameters in that impedances gathered in star. At the load and power 

supply connections as star, by the most convenient method of calculation there 

is method with determining of the voltage of bias neutral which is  found on the 

method of node potentials. 

Initial conditions for the calculation of parameters non-symmetric three-phase 

circuit:  

Е=380, V; lAZ = lBZ = lCZ =(3+4j), Ohm; aZ = (15-8j), Ohm; bZ = (15-8j), 

Ohm; cZ = (10+12j), Ohm; dZ = (10+14), Ohm. 

 

Task solving.  

We accept the initial phase of EMF the phase A as initial. In the calculation 

symbolic form distribute the phase EMF of the symmetrical feed source on 

complex plane 
00380 j

A eE = , V; 
0120380 j

B eE −= , V; 
0120380 j

C eE = , V. 

We shall transform the star impedances aZ , bZ , cZ  into equivalent triangle 

abZ , bcZ , caZ  (Fig. 10) 
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Equivalent delta-connected impedances we calculate as to following known 

equations 
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We reduce to one equivalent impedance of resistance in the triangle phase AB 
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We find the branch impedances and conductions of the of the three-phase 

equivalent star with allowance for impedances in lines (Fig. 1.11) 
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We find the bias neutral voltage and linear (phase) currents in every equivalent 

scheme phase. Calculation we perform on the method of two nodes (the method 

of node potentials the particular case) basis 

.,84,60649,58774,16

0495,0081,0081,0

0495,0380081,0380081,0380

74

303737

3012037120370

000

000000

Vej

eee

eeeeee

YYY

YEYEYE
U

j

jjj

jjjjjj

CBA

CCBBAA
Nn

−

−−−

−−−−

=−=

=
++

++
=

=
++

++
=

 

Under the Ohm's law we reckon phase currents (Fig. 1.11) and find fitting 

conjugate values 
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We determine the potentials values on clamps phase impedances and voltage 

drops in wires feeding lines (Fig. 1.11) 
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We find the phase voltages in every load phase of the equivalent scheme 
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We reckon currents through impedances in initial scheme Fig.1.10 
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We determine the potential of the load's neutral point in initial scheme Fig. 1.9. 
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We calculate the active powers of symmetrical three-phase power supply and 

non-symmetric load 
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Relative error for engineering calculations should not exceed 5% and for 

carried out calculations composes value  

%0%100/)( =−= lls PPP  

We draw on scale currents vector diagram and topographic voltages diagram, 

Fig.1.12. Topographic diagram illustrates voltages distribution between various 

points of the three-phase circuit. Drawing begins from the choice of convenient 

voltages and currents scale and dispositions of the power supply N neutral point 



on complex plane. As a rule, this point situate of at the coordinates origin, i.e. 

the potential the N point of the feed source is accepted to equal zero. Relatively 

this point are postponed the phase and the linear voltages of the symmetrical 

feed source. In drawing take into account, that linear voltages are determined 

through fitting of phase voltages. Subtracting from the points potentials vales of 

the built equilateral the triangle voltage apices of the symmetrical feed source 

the voltage drops on line impedances, we shall receive the point potentials 

which determine the potentials of the apices of linear voltages scalene triangle 

on load. From the onset of coordinates (point N) postpone the bias neutral 

vector between neutral points, i.e. find the potential of point n on load which is  

connected as star. Having connected point n with the apices of linear voltages 

scalene triangle we shall receive phase voltages vectors in the elements 

connection initial scheme. The current vectors suitably and visually to postpone 

from the neutral point of n load. 

Decompose the line currents system into symmetrical components of zero, 

positive and negative phase-sequences. Zero phase-sequences is absent, because 

in connection by star without neutral wire is fulfiled condition AI + BI + CI =0, 

i.е. 
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We distinguish positive currents phase-sequence  
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The negative currents phase-sequence 
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Graphic currents decomposition on positive (Fig. 1.13) and negative (Fig. 1.14) 

phase-sequences consists in drawing of current vectors and their sums 

according to known analytic expressions. 

On complex plane postpone current vector AI , by the end of this vector add 

vector BI , which turn on corner 0120 , to the last vector add vector CI , which 

turn on corner 0240 . We connect the onset of the first vector with end of last 

and received vector divide by three equal parts. Found one third there is current 

vector of the phase A positive phase-sequence. The current phase B vector of 

the positsve phase-sequence advance on 0240  phase A current vector of the 

positive phase-sequence, and in phase C lags behind on 0120  phase A current 

vector of the positive phase-sequence, 

Similarly is  built the current vectors system for negative phase-sequence.  
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1.6. The personal computative-graphic task “The calculation 

parameters of three-phase circuit at harmonic voltages and 

currents” 

 

Calculation non-symmetrical three-phase circuit. 

On Fig.1.15 is given non-symmetric three-phase scheme with symmetrical phase 

electromotive forces (EMF). Numeral significances of EMF, of line phasor 

impedances and load are given in Table 1.1. The three-phase inner impedances 

neglect. 
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For given circuit Fig1.15 it is necessary do following calculations: 

1.   Determine currents and voltages on all circuit districts. 

2.   Compose power balances. 

3.   Build in scale currents vector diagram and the topographic diagram of 

potentials. 

4.   Decompose received linear currents system on symmetrical phase-

sequences by analytically and graphically. 

 

Table 1.1.  

Variant Е, V ,lAZ  ,lBZ  ,lCZ  ,abZ  ,bcZ  ,caZ  

01 660 1 0 0 10+10j 10+15j 10-10j 

02 380 0 1 0 10-10j 10+10j 10+15j 

03 220 0 0 1 10+15j 10-10j 10+10j 

04 127 1j 0 0 10+5j 10+15j 10-10j 

05 660 0 1j 0 10-10j 10+5j 10+15j 

06 380 0 0 1j 10+15j 10-10j 10+5j 

07 220 -1j 0 0 20+10j 10+15j 10-10j 

08 127 0 -1j 0 10-10j 20+10j 10+15j 

09 660 0 0 -1j 10+15j 10-10j 20+10j 

10 380 2 0 0 20+5j 10+15j 10-10j 

11 220 0 2 0 10-10j 20+5j 10+15j 

12 127 0 0 2 10+15j 10-10j 20+5j 

13 660 2j 0 0 10-10j 10+15j 10-10j 

14 380 0 2j 0 10-10j 10-10j 10+15j 

15 220 0 0 2j 10+15j 10-10j 10-10j 

16 127 -2j 0 0 10-5j 10+15j 10-10j 

17 660 0 -2j 0 10-10j 10-5j 10+15j 

18 380 0 0 -2j 10+15j 10-10j 10-5j 

19 220 1+2j 0 0 20-10j 10+15j 10-10j 

20 127 0 1+2j 0 10-10j 20-10j 10+15j 

21 660 0 0 1+2j 10+15j 10-10j 20-10j 

22 380 1+1j 0 0 20-5j 10+15j 10-10j 

23 220 0 1+1j 0 10-10j 20-5j 10+15j 

24 127 0 0 1+1j 10+15j 10-10j 20-5j 

25 660 1-1j 0 0 10+10j 10+15j 10-10j 

26 380 0 1-1j 0 10-10j 10+10j 10+15j 

27 220 0 0 1-1j 10+15j 10-10j 10+10j 

28 127 2+1j 0 0 10+5j 10+15j 10-10j 

29 660 0 2+1j 0 10-10j 10+5j 10+15j 

30 380 0 0 2+1j 10+15j 10-10j 10+5j 

31 220 2+2j 0 0 20+10j 10+15j 10-10j 



Continuation of Table 1.1. 

Variant Е, V ,lAZ  ,lBZ  ,lCZ  ,abZ  ,bcZ  ,caZ  

32 127 0 2+2j 0 10-10j 20+10j 10+15j 

33 660 0 0 2+2j 10+15j 10-10j 20+10j 

34 380 1-2j 0 0 20+5j 10+15j 10-10j 

35 220 0 1-2j 0 10-10j 20+5j 10+15j 

36 127 0 0 1-2j 10+15j 10-10j 20+5j 

37 660 2-2j 0 0 10-10j 10+15j 10-10j 

38 380 0 2-2j 0 10-10j 10-10j 10+15j 

39 220 0 0 2-2j 10+15j 10-10j 10-10j 

40 127 0 1,5 0 10-5j 10+15j 10-10j 

41 660 1 0 0 10+15j 10-10j 20-10j 

42 380 0 1 0 20-5j 10+15j 10-10j 

43 220 0 0 1 10-10j 20-5j 10+15j 

44 127 1j 0 0 10+15j 10-10j 20-5j 

45 660 0 1j 0 10+10j 10+15j 10-10j 

46 380 0 0 1j 10-10j 10+10j 10+15j 

47 220 -1j 0 0 10+15j 10-10j 10+10j 

48 127 0 -1j 0 10+5j 10+15j 10-10j 

49 660 0 0 -1j 10-10j 10+5j 10+15j 

50 380 2 0 0 10+15j 10-10j 10+5j 

51 220 0 2 0 20+10j 10+15j 10-10j 

52 127 0 0 2 10-10j 20+10j 10+15j 

53 660 2j 0 0 10+15j 10-10j 20+10j 

54 380 0 2j 0 20+5j 10+15j 10-10j 

55 220 0 0 2j 10-10j 20+5j 10+15j 

56 127 -2j 0 0 10+15j 10-10j 20+5j 

57 660 0 -2j 0 10-10j 10+15j 10-10j 

58 380 0 0 -2j 10-10j 10-10j 10+15j 

59 220 1+2j 0 0 10+15j 10-10j 10-10j 

60 127 0 1+2j 0 10-5j 10+15j 10-10j 

61 660 0 0 1+2j 10+10j 10+15j 10-10j 

62 380 1+1j 0 0 10-10j 10+10j 10+15j 

63 220 0 1+1j 0 10+15j 10-10j 10+10j 

64 127 0 0 1+1j 10+5j 10+15j 10-10j 

65 660 1-1j 0 0 10-10j 10+5j 10+15j 

66 380 0 1-1j 0 10+15j 10-10j 10+5j 

67 220 0 0 1-1j 20+10j 10+15j 10-10j 

68 127 2+1j 0 0 10-10j 20+10j 10+15j 

69 660 0 2+1j 0 10+15j 10-10j 20+10j 

70 380 0 0 2+1j 20+5j 10+15j 10-10j 



Continuation of Table 1.1. 

Variant Е, V ,lAZ  ,lBZ  ,lCZ  ,abZ  ,bcZ  ,caZ  

71 220 2+2j 0 0 10-10j 20+5j 10+15j 

72 127 0 2+2j 0 10+15j 10-10j 20+5j 

73 660 0 0 2+2j 10-10j 10+15j 10-10j 

74 380 1-2j 0 0 10-10j 10-10j 10+15j 

75 220 0 1-2j 0 10+15j 10-10j 10-10j 

76 127 0 0 1-2j 10-5j 10+15j 10-10j 

77 660 2-2j 0 0 10-10j 10-5j 10+15j 

78 380 0 2-2j 0 10+15j 10-10j 10-5j 

79 220 0 0 2-2j 20-10j 10+15j 10-10j 

80 127 0 1,5 0 10-10j 20-10j 10+15j 

81 660 1 0 0 20+10j 10+15j 10-10j 

82 380 0 1 0 10-10j 20+10j 10+15j 

83 220 0 0 1 10+15j 10-10j 20+10j 

84 127 1j 0 0 20+5j 10+15j 10-10j 

85 660 0 1j 0 10-10j 20+5j 10+15j 

86 380 0 0 1j 10+15j 10-10j 20+5j 

87 220 -1j 0 0 10-10j 10+15j 10-10j 

88 127 0 -1j 0 10-10j 10-10j 10+15j 

89 660 0 0 -1j 10+15j 10-10j 10-10j 

90 380 2 0 0 10-5j 10+15j 10-10j 

91 220 0 2 0 10+10j 10+15j 10-10j 

92 127 0 0 2 10-10j 10+10j 10+15j 

93 660 2j 0 0 10+15j 10-10j 10+10j 

94 380 0 2j 0 10+5j 10+15j 10-10j 

95 220 0 0 2j 10-10j 10+5j 10+15j 

96 127 -2j 0 0 10+15j 10-10j 10+5j 

97 660 0 -2j 0 20+10j 10+15j 10-10j 

98 380 0 0 -2j 10-10j 20+10j 10+15j 

99 220 1+2j 0 0 10+15j 10-10j 20+10j 

100 127 0 1+2j 0 20+5j 10+15j 10-10j 

 

 

1.7. Questions for one's own checking as to the calculation  methods 

of three-phase harmonic circuits 
 

1. Symmetrical three-phase load there is  connected into triangle, and included into 

three-phase network with voltage LU =220 V. Find linear current at the load phase 

resistance PR =11 Оhm. 



 
2. Symmetrical three-phase load there is  connected in star, and included into three-

phase network with voltage LU =220 V. find linear current at the load phase 

resistance PR =11 Ohm. 

3. Ammeter A1 included in the circuit of symmetrical three-phase load, indication 

current value 34.6 A. What value current will show ammeter A2? 

 
4. System of sinusoidal linear voltages is symmetrical. Find the indications of 

ammeter, if the known circuit parameters LU =127 V, ZRP = =10 Ohm.  

 
5. The phase resistance of symmetrical three-phase load ZRP = =10 Ohm. What 

will voltmeter indication if ammeter indicated 17.3 A? 

 
6. In the circuit the  linear voltages are sinusoidal and LU =380 V.  All resistance 

(6 ones) are similar and equal to ZRP = =20 Ohm each. Find ammeter A 

indication.  

 
7. Phase currents of symmetrical three-phase load are equal to 15 А each. What 

will become current Iса after blowing of fuse in wire of phase A? 

 



8. Into how many times will change value of active power, if symmetrical load, 

gathered by star without neutral wire, reconnect into triangle at unchanged linear 

voltage? 

9. The phases resistance of the of couple symmetrical three-phase loads are  

equivalents. The first load is  connected into triangle, second one into star, while of 

both loads are  connected to common network. Find the relation of linear current of 

the first load to linear current of second load. 

10. Symmetrical three-phase load which gathered by triangle, has only ohmic 

resistance in phase = ZR1 =15 Ohm. Second symmetrical load is gathered by star 

and connected into same three-phase network. What ohmic phase resistance of 

second load YZR =2 , if we known, what of linear currents of both wirelesses are  

equal?  

11. Symmetrical three-phase load which gathered by star, has only ohmic 

resistance in phase YZR =1 =9 Ohm. Second symmetrical load is gathered by 

triangle and connected into same three-phase network. What ohmic phase 

resistance of second load = ZR2 , if we known, what of linear currents of both 

wirelesses are  equal?  

12. Symmetrical three-phase load there is  connected into triangle, and included 

into three-phase network with voltage LU =127 V. Find linear current at the load 

phase resistance PR =15 Оhm when wire break in A line. 

13. Given linear voltage PU  =127 V of three-phase network and the ohmic 

resistance of 15 Оhm symmetrical three-phase load. Find current in wire A after 

blowing of fuse in wire of phase C. 

 
 14. Phase currents of symmetrical three-phase load equals to 12 А. What will be 

current in line C after blowing of fuse in wire of phase A? 

 
15. Three-phase network feeding symmetrical load has linear voltage LU =127 V. 

What will voltmeter indicated which included into phase CA after blowing of fuse 

in wire of phase C? 

 



16. Into how many times will change value of line current, if symmetrical load, 

gathered by star with neutral wire, reconnect into triangle at unchanged linear 

voltage? 

17. How change phase current in symmetrical load, by gathered as star with neutral 

wire when wire break in A line.? Load is connected to the symmetrical system of 

voltage source. 

 
18. Given linear voltage LU =380 V of three-phase network which is  connected to 

symmetrical three-phase load. What will be voltage in phase B, if in phase C 

impedance there is short circuit. 

 
19. What will voltmeter indicate which included in the scheme of symmetrical 

three-phase load, if linear voltage of feeding networks is equal LU =220 V, and 

linear wire break in phase B? 

 
20. Phase currents of symmetrical three-phase load are equal 18 A. What will 

become current bcI  after blowing of fuse in wire B? 

 
21. Three-phase circuit worked in symmetrical regime. Load is connected by star 

without null wire. After wire break in phase A necessary to determine modulus of 

voltages BU  and CU . 

22. How to change linear currents BI  and CI  of symmetrical star without neutral 

wire, if in phase A load is short circuit? Linear current in symmetrical load before 

closing switch S was equal to value I=5 A. 

 



23. Three-phase circuit worked at symmetrical regime. Load is connected by star 

without null wire. Find voltage modulus in phases B and C ( BU  and CU ) after 

short circuit in phase A. 

24. Symmetrical three-phase load there is  connected into triangle, and included 

into three-phase network with voltage LU =220 V. Find linear current at the load 

phase resistance PR =11 Оhm after loss of phase B.  

 
25. Into how many times will change value of active power, if symmetrical load, 

gathered by triangle, reconnect into star at unchanged linear voltage? 

26.  Symmetrical three-phase load there is connected into triangle, and included 

into three-phase network with voltage LU =220 V. Find consumed active, reactive 

and apparent powers at the load phase resistance 1010 jZ P += Оhm.  

 
27. Symmetrical three-phase load there is connected into star, and included into 

three-phase network with voltage LU =220 V. Find consumed active, reactive and 

apparent powers at the load phase impedance 1010 jZ P −=  Оhm. 

 
28. Symmetrical three-phase load is  gathered from ideal inductance elements as 

triangle which connected to three-phase circuit by voltage LU =220 V. Find 

consumed active, reactive and apparent powers, if current in line B is 5 A. 

 
29. Symmetrical three-phase load is  gathered from ideal capacitance elements as 

triangle which connected to three-phase circuit by voltage LU =380 V. Find 

consumed active, reactive and apparent powers, if current in line C is 2 A. 

 
30. Symmetrical three-phase load is  gathered from ideal omhic resistance 

elements as triangle which connected to three-phase circuit by voltage LU =220 

V. Find consumed active, reactive and apparent powers, if current in line B is 5 

A. 



 
 

 

2. THE CALCULATION METHODS  OF ELECTRIC SINGLE-

PHASE AND THREE-PHASE CIRCUITS WITHIN NON-

HARMONIC VOLTAGES AND CURRENTS 
 

2.1. Study guides as to the calculation of single-phase non-harmonic 

circuits 
 

1. Non-harmonic currents )( ti   and voltages )( tu  , or in generally case function 

)( tf  , are periodical carvers form of which are not sinusoidal. Periodical function 

)2()(  += tftf satisfying to Dirichlet conditions, maybe presented in the form 

of the sum endless trigonometrically (harmonically) of Fourier series  

)(sin)(
1

0 k
k

km tkAAtf  ++=


=

, 

where 0A  is constant component; к is harmonic number (order); kmA  is к-th 

harmonic amplitude; k  is к-th harmonic initial phase. 

In this case non-sinusoidal periodical function is considered as a result of the 

superposition of sinusoids with aliquot frequencies:  kk = , where T/2 =  is 

main (or first) harmonic frequency. 

Each harmonic has its own initial phase and amplitude. 

Trigonometrically row can be writed down through sinusoidal and co-sinusoidal 

components, each of which has null initial phase 

 )(cos)(sin)(
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0 tkCtkBAtf
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
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, 

and kmkmkm CBA 222 +=   kmkmk BCtg /=  at that. 

In its turn can be determined that kkmkm AB cos=  и kkmkm AC sin= . 

Coefficients kmkm CBA ,,0  are determined through initial function )( tfi   by means 

of integrals Fourier 
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2. Periodic non-sinusoidal function can be characterized by discrete frequency the 

spectra of harmonic amplitudes ( )kmA  and initial phases ( ) k  which 

accordingly are called amplitude-frequency and phase-frequency. 



Spectral composition determines the form of complex harmonic vibration. Two 

non-sinusoidal vibrations have similar form only in similar amplitude-frequency 

and phase-frequency spectra.  

3. Determining of spectral composition no-sinusoidal periodical current or voltage 

can be essential simplified, if preliminary to establish the disposition of the non-

sinusoidal periodical curve symmetry relatively coordinate axes. 

If the non-harmonic periodical curve symmetrical of coordinates onset, then such 

curve is odd )()( tftf  −−=  and Fourier series does not comprise null and 

cosines composing 

)(sin)(
1

tkBtf
k

km  =


=

. 

If the non-harmonic periodical curve symmetrical of ordinate axe, then such curve 

is even )()( tftf  −=  and Fourier series does not comprise sines composing 

)(cos)(
1

0 tkCAtf
k

km  +=


=

. 

If the non-harmonic periodical curve symmetrical of time axis (abscissa), then for 

such curve it's true )()(  +−−= tftf  and Fourier series does not comprise null 

and even composing 

)(sin)(sin)(sin)(
...5,3,1...5,3,1...5,3,1

tkCtkBtkAtf
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. 

There are  possible cases, when investigated curve owns the several types of 

symmetry. If curve symmetrical relatively coordinates onset and abscissas axis, 

then Fourier series  is simplified till form  

)(sin)(
...5,3,1

tkBtf
k

km  =


=

. 

At the symmetry relatively of y-aхises and abscissas, Fourier series changes till 

form  

)(sin)(
...5,3,1

tkCtf
k

km  =


=

. 

4. If non-sinusoidal function is described analytical, then determining of its 

spectral composition is performed by means of the search of amplitudes and initial 

phases harmonic by means of Fourier formulae.  

If there is absent the analytic description of investigated periodical non-sinusoidal 

function, then in this instance the parameters of harmonic Fourier series possibly to 

calculate by means of graphic-analytical method. The graphic-analytical method is 

founded on the replacement of definite integral by the sum of finite number of 

summands. The constant component and amplitudes sin and cosune components of 

series detect out from correlations  
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where х – running coordinate; n – partitioning number on the repetition period ; р – 

current index accepting significances from 1 till n;  )(xf p  - the significance of 



harmonic function at current phase npx /2= ; )(sin kxp , )(cos kxp  - the 

significance of function )sin(kx  and )cos(kx  at current co-ordinate npx /2= . 

In calculations follows to take into account that omhic resistance accords the 

identical resistance for all voltage harmonic components )tantconsRk = . 

Inductive resistance enlarges with the growth of harmonic number LkxLk = , 

capacitive resistance decreases with growth of harmonic number )/(1 CkxCk = . 

5. For the every calculation be performed by the known methods of circuits single-

phase harmonic currents calculation, by namely symbolic method. For every 

harmonic component taken separately, possibly draw current vector diagram and 

combined with it vector voltage diagram. 

6. At presence higher harmonics in voltage and current curves and heterogeneous 

reactive elements in circuits are possible resonance phenomena on separate 

harmonics. If voltage and current on k-th harmonic coincides as to phase, then on 

this harmonic is seen the voltage resonance in the series connection of 

heterogeneous reactive elements, in their parallel connection is seen the currents 

resonance. 

7. Voltage (or current) effective value at presence higher harmonics is determined 

as root square from the sum of squares null component and effective values of 

harmonic components 

;
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8. Coefficients characterizing form of non-sinusoidal periodic curves. 

For the characteristic of the periodical curves form are introduced the coefficients 

of amplitude AK , forms FK , distortions DK , of harmonics HK  and pulsations 

PK .  

The amplitude coefficient AK  is determined as quotient of maximal value to it 

effective value 
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22
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K . 

For the harmonic function the amplitude coefficient .41,12 ==AK  

The form coefficient FK  there is the quotient of effective value to middle MdA  for 

the half of period ones 

Md
F

À

A
K = . 

For the harmonic function the form coefficient .11,1=FK  

The distortion coefficient DK  is determined as quotient of effective value main 

harmonic component to it effective value  
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For harmonic function the distortion coefficient 0,1=DK . 

The harmonic coefficient obtain as quotient of non-sinusoidal effective value not 

counting zero and the first harmonic to acting value of the first harmonic 
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For sinusoidal value the harmonic coefficient is not determined. 

The pulsations coefficient is determined as quotient of non-sinusoidal effective 

value not counting zero and the first harmonic to effective value of the first 

harmonic  
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For sinusoidal value the harmonic coefficient is not determined. 

9. The circuit power at alternating current of arbitrary form is determined as 

middle power for period or in symmetrical curve form for the period half.  

Active power in non-harmonic currents and voltages is  equal to the sum of powers 

of separate harmonics  
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k
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Reactive power in non-harmonic currents and voltages is  equal to the sum of 

powers of separate harmonics  
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The apparent power at presence high harmonics define through effective values of 

non-harmonic voltage and current 
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This power turns out to be more, than definite through values of active and reactive 

powers component 

22

1

22
0

1

22
0 QPIIUUS

k
k

k
k +=








+








+



=



=

. 

This equality is fulfiled only in circuits in which the form non-sinusoidal currents 

and voltages completely identical.  

The value 
222 QPST −−=  



is called as the distortion power. Quotient T/S characterizes the distinguishing 

degree in the forms of curves current and voltage. 

 

2.2. Study guides as to the calculation of three-phase non-harmonic 

circuits 
 

1. If in three-phase circuit acts symmetrical three-phase non-sinusoidal supply 

power, then in this case EMF have similar form and shift in time on the one third 

period of repetition 

;sin
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The harmonic components with numbers к=1,4,7,10 and so on will form 

symmetrical systems of positive sequence. 

The harmonic components with numbers к=2,5,8,11 and so on will form 

symmetrical systems of negative sequence. 

The harmonic components with numbers к=3,6,9,12 and so on (this гармоники 

aliquot three) will form symmetrical systems of zero sequence.  

Peculiarity aliquot three harmonic components is that they coincide as to phase. 

This circumstance brings to the peculiarities of the three-fase circuits work in 

presence high harmonic components, that there is  necessary to take into account in 

calculation. 

2. At the connection of the three-phase power supply clamps by triangle in the 

regime of open circuit in windings flow current, conditional third and aliquot three 

harmonic components. The effective value of such current is determined as 

.
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3. At the connection of the clamps of three-phase power supply by open triangle 

that in the point of triangle discontinuity acts voltage 
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
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)(sin3
k

kkm tkEu  . The effective value of such voltage is determined as 
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4. In linear voltage irrespective of the clamps connection scheme of power supply 

are absent harmonic components aliquot three. 

At connection by star: 

- phase voltage effective value =


= ,...9,7,5,3,1

2

k
kP UU . 

- line voltage effective value =
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- the quotient of linear volage to phase one 
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At connection by triangle voltage component, due to harmonic components aliquot 

three, neither will appear between the phase clamps, because will be recompensed 

the voltage drop on inner phase impedances. If the current in the triangle side 

comprises harmonic components, aliquot three =


= ,...9,7,6,5,3,1

2

k
kP II , that into 

exterior (linear) wire the current will not comprise harmonic components, aliquot 

three =


= ,...7,5,1

23
k

kL II . 

5. At the connection of power supply and symmetrical charge by star and 

absence neutral wire the linear current will not comprise harmonic components, 

aliquot three, i.e. =


= ,...7,5,1

2

k
kL II . 

Between the null points of power supply and load acts the voltage 
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2.2 The circuit parameters calculation of single-phase non-harmonic 

at resistance-capacitance in scheme 
 

Task.  

To electric circuit, scheme which is  presented on Fig. 2.1, 

is  applied non-sinusoidal periodically voltage  

)1805sin(75,23sin64,7sin8,68)( 0−++= ttttu  ,V. 

Scheme parameters 5=R  ohm, 15
1

==
C

xC


 ohm. 

Determine instantaneous current value in circuit, effectiv 

value of one and the circuit's power factor. 

 

Task solving. 

We determine of impedance for each of harmonic 

components: 

-for the first harmonic component 

;81,15155
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1 =−=−= − j
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- for the third harmonic component ;07,755
045
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- for the fifth harmonic component .83,535
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5 =−=−= − j
C ejjxRZ  

We reckon amplitude of current harmonic components phasor values: 

- the first current harmonic component ;35,4
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- the third current harmonic component ;08,1
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- the fifth current harmonic component .471,0
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Instantaneous current value: 
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The circuit reactive power 
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Effective values of non-sinusoidal voltage and current 
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The circuit apparent power 
.82,15518,349 VAUIS ===  

The distortion power  

.var68,2473,14419,5282,155 222222 =−−=−−= QPST  

The circuit's power factor 
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2.3. The single-phase non-harmonic circuit parameters calculation 

at series connection resistance-inductance-capacitance in scheme 
  

Task.  

Determine current in series circuit, Fig.2.2, which has 

parameters 10=R  ohm, 05,0=L  H 
6105,22 −=C  F. 

The which applied to the scheme clamps is non-

sinusoidally 

Vttttu ),1,05sin(403sin60sin180)(  +++= . 

Angular frequency of main harmonic ./314 srad=  

 

Task solving. 

We determine the circuit impedance and the phase drift corners for every harmonic 

component: 

- the first harmonic component 
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- the third harmonic component 
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- the fifth harmonic component  
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We reckon amplitudes of every current harmonic components 
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The effective value current in circuit 
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There is necessary to notice that for third harmonic component is seen the voltage 

resonance. The impedance for third harmonic component is equal to ohmic 

resistance of circuit. Third harmonic component has essential specific weight in 

current curve, than in voltage curve. The correlation of amplitudes third to the first 

harmonic components 
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 2.4. The single-phase non-harmonic circuit parameters calculation 

at mixed connection of resistive-inductive-capacitive resistance in 

scheme 
 

Task.  

Given the scheme parameters on main 

harmonic component (Fig. 2.3) 4=R  ohm, 

3== LxL   ohm, 12
1

==
C

xC


 ohm.  

Into circuit included two sources of energy 

supplies:  non-sinusoidal one 

   Vttte ),
9

2sin(12sin344)(


 +++=   

and direction one Vte 12)(2 = .  

Determine instantaneous current values in 

circuit branches and reading of an 

electromagnetic system devices. 

 

Task solving.   

The calculation we perform by the superposition method from action every EMF 

harmonic component with symbolic method using.  

For the EMF direct components current value 
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We shall determine branches current from action the first EMF harmonic 

component. The circuit input impedance for the first harmonic component 
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The phaser current amplitude value in circuit unbranched part 
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 The instantaneous current value in circuit unbranched part 
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The current of second branch 
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The current in third branch 
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For the second harmonic component circuit impedance and current 
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The current in circuit unbranched part .,0)2(12 Ati =   

As to second harmonic component in circuit is seen current resonance.  

Current in branches from second harmonic component 
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Note: the first index shows the number of district, and second shows the harmonic 

component number.  

We find the electromagnetic system's gage readings (non-sinusoidal currents and 

voltages effective values). The electromagnetic system ammeter indications 
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The electromagnetic system voltmeter indications  
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The instantaneous current value in the circuit branches 

Current in circuit unbranched part  
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Current in second branch 
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Third branch current 
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2.5. The three-phase non-harmonic circuit parameters calculation at 

the load gather in symmetrical delta-connection  
  

Task.  

In three-phase circuit there is non-harmonic EMFs symmetrical system (Fig.2.4). 

The EMF in B phase of three-phase symmetrical non-harmonic source is known 

.),305sin(230)3sin(245)
6

sin(260)( 0 VtttteBN −+++= 


  

Impedances in the load phases on frequency of the first harmonic component is 

known OhmZZZ cabcab ,15111 === .  

Determine the electromagnetic system's gage readings (non-sinusoidal currents and 

voltages effective values). 

 

Task solving. 

The voltmeter indicate linear voltage effective value from the first and fifth 

harmonic components, because third harmonic components will form voltage zero 

sequence in three-phase source 
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The ammeter indications  
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First of all we shall determine the phasor linear voltages for the first harmonic 

component in given phase EMF 
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We calculate linear voltage value for fifth harmonic component: 
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The phase currents of first harmonic component: 
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The line currents of first harmonic component: 
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The phase currents of fifth harmonic component: 
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The electromagnetic system ammeter indication  
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2.6. The three-phase non-harmonic circuit parameters calculation at 

the load gather in symmetrical Y-connection with the neutral wire 
 

Task.  

In three-phase circuit there is non-harmonic EMFs symmetrical system (Fig.2.5). 

The phase B EMF of three-phase symmetrical non-harmonic source is known 

.),1005sin(230)603sin(260)30sin(2100)( 000 VtttteBN −+−++=   

Impedances in the load phases on frequency of the first harmonic component is 

known OhmZZZ cabcab ,15111 === .  

Write down the instantaneous value of linear voltage BCu  and current in neutral 

wire Nni . Determine indications of the electrodynamic system devices. 

 

Task solving. 

The equation of linear voltage 1BCu  for the first harmonic component we find 

through difference fitting phase voltages 

)30sin(2100 0
1 += tuB  ; ;100
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The line voltage 
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The instantaneous value  

.),60sin(1732 0
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For the third harmonic component because of zero sequence we have 

0333 =−= BBBC uuu . 

The equation of linear voltage 5BCu  for the fifth harmonic component we find 

through difference fitting phase voltages 
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The line voltage 
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The instantaneous value  
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The instantaneous value of line voltage contain the first and fifth harmonic 

components   

.),1305sin(3032)60sin(1732 00
51 Vttuuu BCBCBC −++=+=   

The electrodynamic system voltmeter indication  
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We shall find current equation in neutral wire.  

Phase voltage phasor value for the first harmonic component 
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Currents phasor value in phases and neutral wire for the first harmonic component 
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Currents phasor value in phases and neutral wire for the third harmonic component 
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Currents phasor value in phases and neutral wire for the fifth harmonic component 
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The instantaneous value of current in neutral wire Nni  
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The indication of the electrodynamic system ammeter  
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2.7. The three-phase non-harmonic circuit parameters calculation at 

the load gather in symmetrical delta-connection and when there are 

impedances in lines 
 

Task. In three-phase circuit there is non-harmonic EMFs symmetrical system 

(Fig.2.5). The phase B EMF of three-phase symmetrical non-harmonic source is 

known 

 



In three-phase electric circuit acts symmetrical non-nsinusoidal system EMF: 

,),5sin(60)cos(140)( VttteAB  +=  where T/2 =  at  Т=0,015 s. The 

scheme parameters 24=R  ohm, 5,7=L  mH, 5,37=C F . The scheme is 

presented on Fig. 2.6. 

Determine the electromagnetic systems indications of ammeter and voltmeter and 

the active and apparent powers of three-phase system. 

 

 
 

Task solving.  

For accounting the line inductive resistance we shall transform connections by the 

triangle of EMF power supply and load into equivalent stars, Fig.2.7. Find the 

phase voltage in the phases power supply on equivalent star 

,),5sin(60)cos(140)( VtttuAB  −−=  
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At the defining of phase voltage )( tuA   according to known line voltages, is  

taken into account, that they differ as to modulus in 3  time. Between phase and 

line voltages there is the shift phase 030  and for line voltage fifth harmonic 

component is seen the phase interlacing negative sequences. That is why the fifth 

harmonic component phase voltage lead line one on 030 . 
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The every line impedance: 

- for the first harmonic component  14,3105,76,418 3
1 jjLjZ l === −  ohm; 
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- for the fifth harmonic component  7,15105,76,4185 3
5 jjZ l == −  ohm. 
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For the equivalent star scheme the phase load impedance: 
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For the equivalent star scheme the phase load impedance with a glance of line wire 

impedances: 
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The line current amplitudes: 

- for the first harmonic component  ;,085,4
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The ammeter indication 
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Phase voltage effective value on load 
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The voltmeter indication 
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Three-phase circuit active and apparent powers 

- active power .44,27784,333 2
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2 WtRIP Y ===  

- apparent power VAIUS LL 6354,310833 === , 

where non-sinusoidal voltage effective value  
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2.8. Questions for one's own checking as to the calculation methods 

of single-phase circuits within non-harmonic voltages and currents 
 

1. Find voltage U effective value if  R=10  ,  L=10  , 

( )( )452sin25sin255 otti +−+=  ,А. 

 
2. Find current I effective value, if 

( )( )603sin2100sin2100 ottu +−=  , В; 10=L  ; 
C

1
=30 . 

 
 

3. Find circuit power factor, if given R=4  , == Lxl  3  , and current is 

( )ti += sin234 , А. 

 

4. Find apparent power S of the circuit, if given: )sin234( ti += , А; 

( )34 jz += ,  . 

 
 

5. For the circuit applied voltage ( )( )45100sin2100100 otu ++=  V. Find reactive 

power Q  of the circuit, if given 10
1

=


==
C

LR


   . 



 
6. Determine distortion power Т of passive one-port scheme, if given voltage 

tu sin2100= , V and current ( )( )60sin21010 oti ++=  А. 

7. For the one-port scheme applied voltage ( )( )45100sin141100 otu ++= , V, under 

one flows current  ti 100sin5= , А. Find apparent power S. 

 8. Determinate power factor of passive one-port scheme, if given  

 ( )( )453sin250sin2120 ottu ++=  , V, ti sin24= , А. 

9. Determinate active power Р of circuit which contain series connected R, L 

elements if ( )ti sin236 += , А, R=4  , L =3  . 

 
 

10. Find active power Р which is consumed in circuit if  ( )( )45sin100100 otu ++=  , 

V, 

     С=100  F, R=10   and circuit is work at current resonance ( =314 rad/s) 

. 

11. For the series connected R, L, C elements applied non-sinusoid voltage 

( )45100sin1002100 otu ++= , V, R
C

L ==



1

=100  . Find active power P 

which is consumed in circuit. 

 
 

12. Find active power P which is consumed in circuit if  

 ( )ttu  3sin220sin2100 += ,V, R=10  , 
1

C
=30  . 

 
13. Find active power P which is consumed in circuit if 

( )ttu  2sin240sin2100 += ,V, R=20  , L =10  . 

 
14. To the one-port scheme is applied voltage ( )( )45100sin150100 otu ++= ,V, 

under one flows current  i =5 А (instantaneous value). Find active power P which 

is consumed in the one-port scheme.  

 



15. To the one-port scheme applied voltage ( )( )45100sin141100 otu ++= , V, under 

one flows current  ( )ti 100sin5= , А. Find active power P this is consumed in the 

one-port scheme. 

16. To the circuit applied non-sinusoidal voltage tu sin5100+= , V; 

RL
C

== 


1
. Determine the reading of magnetoelectric system voltmeter. 

 
 

17. Current and voltage of one-port scheme are given tIi m sin1= , А 

( )45sin1
o

mo tUUu ++=  , V. Define LxL =  if )/(1 CR = =40 . 

 
 

18. To the circuit apply non-sinusoidal voltage ( )tu sin21020 += , В. Given 

R=10  , 
C

L



1

= =10  . Determine ammeter А readings of electromagnetic 

system. 

 
 

19. To the circuit applied non-sinusoidal voltage ( )tu 100sin21020 += , V; 

R=10  , 
C

L



1

= . Determine electromagnetic system ammeter А1 readings. 

 
20. To the circuit applied non-sinusoidal voltage ( )tu 100sin5,70100+= ,V, 

R=100  , С=100 F . Determine display  of voltmeter V of electromagnetic 

system. 

 
21. To circuit applied non-sinusoidal voltage ( )100sin141100+=u , V. The circuit 

parameters given: C=100 F , L=1 H, R=10  . Determine electromagnetic 

system voltmeter V readings. 



 
 

22. To circuit applied non-sinusoidal voltage ( )tu sin150100+= , V. The circuit 

parameters are:  =100 rad/s, С=100 F , L=1 H, R=10  . Determine 

electromagnetic system voltmeter V readings. 

 
 

 

 

 

 

23.Given: ( )tu 100sin150100+= , V, С=100 F , L=1 H, R=10 V . Determine 

electromagnetic system voltmeter V readings. 

 
 

24. Find voltage U effective value if  R=20  ,  L=5  , 

( )( )452sin25sin255 otti +−+=  ,А. 

 
25. Determine electromagnetic system ammeter A readings, if 

( )( )+−= 603sin2100sin2100 ttu  , V. L =10 ohm, 
C

1
=30 ohm. 

 
 

 

26. Find voltage that applied to circle, if there are given R=4 ohm, LxL = =3 

ohm, and current ( )ti sin234 += , А. 

 
27. Determinate active power Р of circuit which contain series connected R, L 

elements if R=4 ohm, 
Lx L=  =3 ohm, and current is  ( )ti sin234 += , А. 



 
 

28. Determinate reactive power Q of circuit which contain series connected R, L 

elements if R=4 ohm, 
Lx L=  =3 ohm, and current is  ( )ti sin234 += , А. 

 
 

29. Determinate apparent power S of circuit which contain series connected R, L 

elements if R=4 ohm, 
Lx L=  =3 ohm, and current is  ( )ti sin234 += , А. 

 
 

30. Determinate distortion power Т of circuit which contain series connected R, L 

elements if R=4 ohm, 
Lx L=  =3 ohm, and current is  ( )ti sin234 += , А. 

 
 

 

3. THE CALCULATION METHODS OF TRANSIENTS IN 

LINEAR CIRCUITS 
 

3.1. Study guides as to the calculation of transients in linear circuits 
 

1. Transients calculation by classical approach. 

1.1. Transients appear in electric circuits where in reactive elements there are 

electromagnetic stored energy changes. The stored electromagnetic energy at the 

finite energy power sources can change only as smooth, without step changes 

which brings to the transients appear. 

1.2. We consider the stored electromagnetic energy change at expense of 

switchings in the circuit branches. Any switching in circuits we determine by 

"coomutation" term.  

1.3. Switching are performed by means of keys. In electric circuits are used the 

keys of two types: normally closed contact (normally closed contact, normally-on 

contact, front-release contact) and normally open contact  (make contact, front 

contact, normally-off contact). The normally closed contact till coomutation have 

the resistance equal to zero, and after of coomutation this resistance equal to 

infinity. At normally open contact till coomutation resistance is  equal zero, and 

the after of coomutation is  equal to infinity. 

1.4. In the circuit transient is described by nonhomogeneous differential equation. 

The order of differential equation uniquely is determined by quantity of energy 

storages in electric chain. In the right part of nonhomogeneous differential 

equation situate the value of quantity which determined by the circuit parameters 

power supply. 



1.5. The nonhomogeneous differential equation solution is defined in the form of 

the two integrals sum. The first integral is determined by the general solution of 

homogeneous differential equation and is called this deciding as natural component 

of transient and second integral is determined by the partial decision of 

nonhomogeneous differential equation and is called this deciding as forced 

(enforced) component of transient. 

1.6. The transient natural component is defined by the characteristically equation 

roots. The characteristically equation roots is funded from the operational 

resistance of electric circuit after commutation. For characteristically equation 

every root correspond its transient exponential component. 

1.7. The real parts of the characteristically equation roots should be negative, that 

correspond to extinctions transient. 

1.8. The value reciprocal to modulus from the characteristically equation root real 

part is the constant time of transient. The transient to last from three till 5 constants 

time. 

1.9. Deciding of differential equations brings to the necessity of the calculation of 

integration constant which are calculated based on independent and dependent 

initial conditions. 

1.10. Independent initial conditions are determined on electromagnetic energy 

storages. Independent initial conditions are calculated based on laws of 

commutation. 

1.11. The first commutation law: in any electric branch comprising inductance 

element the current and flux linkage at the commutation moment preserve values 

which they are owned directly before commutation moment, and in further they 

change beginning from these values. In particular case the first commutation low 

can be formulated as a commutation rule: current in inductance by stepwise does 

not change. 

1.12. The second commutation law: in any electric branch comprising capacitance 

element the voltage and charge at the commutation moment preserve values which 

they are owned directly before commutation moment, and in further they change 

beginning from these values. In particular case the second commutation low can be 

formulated as a commutation rule: voltage in capacitance by stepwise does not 

change. 

1.13. The beginning count of transient performed from the commutation moment. 

1.14. Dependent initial conditions are calculated based on independent initial 

conditions and Kirchhoff's laws composed at the commutation moment. 

 

2. The operational method of the transient calculation. 

2.1. On the calculation first stage are determined according to the coomutation 

laws the independent initial condition on storages of electromagnetic energy under 

the commutation laws. 

2.2. On the second stage of calculations pass on from area real variable to 

operational representations, with this end in view be built the replacement  

operational scheme, in which nonzero initial conditions on energies storage are 

taken into account by means of input additional EMFs. 



2.3. By the operational replacement scheme we define the sought quantity by 

means of deciding of algebraic equations by one of known methods: under 

Kirchhof's laws, of mesh currents, of node potentials, of transforms, of 

superposition, of equivalent generator. 

2.4. On the third calculation stage being looked the value will be obtain in the form 

of the fractional-rational function as quotient of the polynomials of numerator to 

the denominator polynomial. 

2.5. We pass on from the area of operational images into area real variable. In 

simplest cases we use the tables of conversions, and generally case by means of the 

applications of the expansion theorem. 

 

3. The calculation of transient by the variable states method. 

3.1. Alongside with branches current and voltages in the capacity of variables there 

is convenient to choose variables which bring to deciding of differential equations 

in normal form or Cauchy's form. The normal form of the system of differential 

equations define that every equation comprises only the first derivation of fitting 

variable which is written down in the left part of equation. Right part of equation 

does not comprise derivations and there is linear function of selected state 

variables and acting in the circuits the energy sources. Such variables are states 

variable, and the equations are the state equations. Whereat state variables will 

form the equations system from the minimal number of variables which 

completely determine transient current and voltage functions in all branches of 

circuit after commutation. 

3.2. The quantity of the first order equations in Cauchy's form in the equations 

system and variable stats quantity, there is equal to the differential equation order 

or to energy storages in circuits. 

3.2. For electric circuits as state variable conveniently to accept currents in 

inductive elements )(tiL  and voltages on capacitive elements )(tuC , where there 

are fulfiled independent initial conditions. 

3.3. Using Kirchhof's laws compose the equations system in normal form in which 

enter the state vector, the energy sources parameters and branches resistance 

VBXAX
dt

d
+= , 

where X  – the state vector; V  – supply sources vector; BA,  – coefficient 

matrixes, which defined by circuit branch parameters. 

3.4. The received differential equations system 

VBXAX
dt

d
+=  

is decided analytical by using the apparatus of matrix transformations or by digital 

methods by means of differential equations integrating with allowance for initial 

condition in Cauchy's form. 

3.5. Having found the circuit state vector X , then output vector Y  is determined as 

the linear combination of the state vector and the energy sources vectors  



VDXCY += , 

where DC,  – coefficients matrixes which determined by the circuit branches 

parameters. 

 

4. Transient calculation on basis of the Duhamel integral (superposition integral) 

4.1. By classical or operational methods find transients in circuits at perturbations, 

when ones has analytic description. 

4.2. For the relief of the search the dependent initial condition at the commutation 

moment in inductive coil suitable to replace ones by ideal current sources, and 

capacitive elements by the ideal voltage sources. The current value of current 

source is determined by the first commutation law and the voltage value of the 

ideal voltage source under the second commutation law. At zero initial conditions 

can be considered that inductive coil at the commutation moment tears branch, 

where it is included, and capacitive content shunting the subcircuit branch, where it 

is included. 

4.3. By transient function find normalized transient function upon of single power 

supply: voltage source with output voltage 1 V or current source with output 

current 1А. The normalized transient function in depending from dimensions input 

and output signals can have dimension of resistance, conductions or to be 

dimensionless value. 

4.4. Perform the piecewise-linear approximation of input voltage or current by 

analytic description by time functions. 

4.5. For the separated input curve pieces of piecewise-linear approximation apply 

one of the forms of Duhamel integral and find the circuit reaction upon given 

complex input signal as the decisions sum form which are connected on the 

borders of the approximation pieces. 

 

3.2. The circuit parameters calculation of transients in branched 

resistive-inductive circuit 
 

Task.  

Calculate transients current and voltage 

by classical and operational methods in 

electric circuit, Fig.3.1 that comprising 

elements: 10=== RRR Kîãð  ohm, 

05,0=KL  H, 20=U  V. 

 

Task solving by classical approach.  

Before of commutation moment the 

circuit comprises only one branch that 

flowed by current   
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In according to the current’s value ÀiL ,1)0( =−  before the commutation moment 

inductive coil stored energy in magnetic field 2/)0()0( 2 −=− LL LiW . At 

termination of transient the inductive coil flowing by direct current (forced 

response) 

À
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RR
R

U
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Ê
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Ê
S

fL ,67,0=
+

+


+

= . 

At termination of transient stored electromagnetic energy in inductive coil 

2/)0( 2
fLfL LiW =−  to change (be decreased), because flowed coil current is 

reducing. Based on continuity principle of the stored electromagnetic energy in 

circuit appears transient. For the calculations simplification current and voltages in 

branches with inductive coil simpler to find current at first, and voltage on 

inductive coil to calculate as voltage drop from this current.  

After commutation moment are generated natural (index n) and forced (index f) 

currents in every branches  

 .;; LnLfLRnRfRfn iiiiiiiii +=+=+=  

The current branches forced component find after the transient ending . In the 

calculation is taken into account, that ideal inductive coil does not accord 

resistance to flowing direct current, and currents in parallel branches are 

determined as in divider currents: 
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The natural components of transient find as to the roots of characteristically 

equation. This equation find through circuit resistance for alternating current after 

commutation moment  

( )
.

RLjR

RLjR
RZ
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KK
S

++

+
+=




 

Into found resistance introduce the characteristically equation root р by means of 

the formal replacement of symbols pj →  and equalization equation to zero  

( )
.0=

++

+
+

RpLR

RpLR
R

KK

KK
S  

We separate the root of characteristically equation 

( ) ( ) ( )
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The fractional rational function is equal to zero, when numerator is equal to zero 



( ) ( ) RpLRRpLRR KKKKS ++++ =0. 

The desired root quantity of characteristically equation 
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For found root generally correspond of natural branches current 
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where 21,, AAA  - integrating constants. 

For the search of integrating constants find independent initial conditions 

ÀRRUi ÊSL ,120/20)/()0( ==+= . 

Dependent initial conditions find according to independent ones and Kirchhof's 

laws composed at the commutation moment  
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We find solution of the equations system with two unknown currents 
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Having found dependent initial conditions find the integrating constants 21,, AAA  

by using initial equations transient currents at the commutation moment (t=0) 

 

 

 

 

 

 

Found solution for branches current 
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The voltage drop on inductive coil 
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The voltage on inductive coil can be calculated directly as sum of forced and free 

components  
.LfLnL uuu +=  

The forced component of the voltage drop after ending of transient is equal to zero, 

because the inductive coil flowing by direct current .0=Lfu  
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The free component define according to the characteristically equation root 

ñp /1,300000−= : 
pt

Ln eAu 4= . We find dependent initial conditions having 

applicated to the exterior contour second Kirchhof's law 

);0()0()0( LKLS uRiRiU ++=  );0(101520 Lu++=  .,5)0( VuL −=  

The initial equation at the commutation moment 

);0()0()0( LfLnL uuu +=  .05 4 +=− A  

Desired solution for transient voltage on inductive coil the after of commutation 

moment coincides with early found value .,5 300000 Veu t
L

−−=  

 
Fig. 3.2. 

 

The graphs of the computative values of the transient voltage on inductive coil and 

branches currents are  presented on Fig. 3.2. 

 

Task solving by operational method.  

Nonzero initial conditions on energies storage (coil inductive) defined according to 

the first commutation law 

ÀRRUi ÊSL ,120/20)/()0( ==+= . 

The operational replacement scheme is built after commutation moment with 

allowance for nonzero initial conditions, Fig.3.3.  

Images of being looked for branch currents find by mesh method in operational 

form 
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The scheme’s mesh currents images 
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The scheme’s branch currents images 
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We find originals of desired currents quantity in functions real variable using the 

expansion theorem 

( )

( )

.002,0300)()()(

;300000;00001,0300)()()(

;101200)(;105,0200)(

;001,0300)()()(;105,1400)(

642

10642

3
5

3
3

642
3

1

ppFpFpF

pppppFpFpF

ppFppF

pppFpFpFppF

+===

−==→=+===

+=+=

+===+=

−−

−

 

 

;16,033,1
)300000(002,0300

)300000(105,1400

300

400

)300000(

)300000(

)0(

)0(

)(

)(
)(

300000300000
3

300000

2

10

2

1
1

0 2

1

tt

tt

n

tp

n

n

ee

e
F

F
e

F

F
e

pF

pF
ti n

−−
−

−

=

+=
−+

−+
+=

=
−

−
+


 =


=

 

 

;17,067,0
)300000(002,0300

)300000(105,0200

300

200

)300000(

)300000(

)0(

)0(

)(

)(
)(

300000300000
3

300000

4

30

4

3
1

0 4

3

tt

tt

n

tp

n

n
R

ee

e
F

F
e

F

F
e

pF

pF
ti n

−−
−

−

=

−=
−+

−+
+=

=
−

−
+


 =


=

 

 

.33,067,0
)300000(002,0300

)300000(101200

300

200

)300000(

)300000(

)0(

)0(

)(

)(
)(

300000300000
3

300000

6

50

6

5
1

0 6

5

tt

tt

n

tp

n

n
L

ee

e
F

F
e

F

F
e

pF

pF
ti n

−−
−

−

=

+=
−+

−+
+=

=
−

−
+


 =


=

 

 

The operational image of the voltage drop on inductive coil find under the law 

Ohm's in operational form  
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The voltage original on inductive coil find having applicated the expansion 

theorem 
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3.3. The circuit parameters calculation of transients in branched 

resistive-capacitive circuit 
 

Task.  

Calculate of transient currents and voltages by 

classic and operational methods in electric circuit, 

Fig.3.4 which comprising elements: 10== RRO  

ohm, 10=C  F , 20=E  V. 

 

Task solving by classical approach.  

In branches comprising capacitive elements more 

convenient in the beginning to find voltage on capacitances, and current to 

determine as derivative from the calculated capacitive voltage. Branch resistance 

comprising key S after of commutation moment is equal to zero, that is why the 

scheme after of commutation moment breaks into two independent contour: left 

and right ones, in which flowing independent transients.  

We reckon of branches current and voltage on capacitance by the superposition 

method of forced and natural components  
.;; CfCnCCfCnCfn iiuiiiiii +=+=+=  

The forced component find in circuit at transient termination. We take into account 

that ideal the capacitive element direct current does not conducting 

.,0;,0;,0,2
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VuAiA
R

E
i CfCff ====  

General solutions for transient natural component determine according to the 

characteristically equation roots. Roots find as to input resistance for alternating 

current. Because characteristically equation is common for all circuit therefore in 

this calculation more convenient to find the input resistance relatively of branch 

with capacitive  

.
1

R
Cj

Z +=


 



Work into last equation the root of characteristically equation by means of the 

formal symbol replacement j  on symbol р and after equalization the equation to 

zero, shall receive 
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From where  the value of the characteristically equation root 
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For the characteristically equation root correspond currents and voltage natural 

component 
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where 21,, AAA  - integrating constants. 

For the integrating constant define we find independent initial conditions. As to the 

second commutation law the voltage on capacitive element 
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Dependent initial condition find as to independent ones and Kirchhof's laws which 

composed at the commutation moment 
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Having found dependent initial conditions find the integrating constants 21,, AAA  

using initial equations currents transient at the commutation moment in t=0  
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Found deciding for current branches and voltage on capacitance 
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Absence natural current component in branch with power supply bears evidence 

about step change current from initial zero value till two amper without the 
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generation natural component of transient. This is explained by storage energies 

absence in contour with power supply after commutation.  

The capacitive current is defined through derivative from capacitance voltage 

,0,2
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There is directly confirming the solution as correct. 

 

Task solving by operational 

method.  

The nonzero initial condition on 

energy storage (capacitive element) 

define as to the second commutation 

law .,20)0( VEuC ==  

The operational replacement scheme 

is built after commutation moment  

with allowance for nonzero initial 

conditions, Fig.3.5. 

The operational image of desired 

branches current find under the 

Ohm's law in operational form, because transients in contours are independent 
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We find originals desired currents in functions real variable using the expansion 

theorem 
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We shall find the operational image voltage drop on capacitance under the Ohm's 

law 
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The original of desired voltage on capacitive in real variable function we find by 

using the expansion theorem 
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The calculation result of the voltage drop by ope3rational method reveals that in 

final equation is taken into account not only voltage on capacitive element but also 

nonzero initial condition on the capacitor. 

 

3.4. The circuit parameters calculation of transients in branched 

resistive-inductive-capacitive circuit 
 

Task.  

Calculate of transient currents and voltage by 

classic and operational methods in electric circuit, 

Fig.3.6, which comprising elements 1,01 =R  ohm; 

1,02 =R  ohm; 103 =R  ohm, 104 =R  ohm,  

0,1=L  mH, 30=C  F , 20=E  V. 

 

Task solving by classical approach.  

In order to avoid the operations of integrating of 

eventual results, find branches current and voltage 

on capacitor. The drop voltage on inductive 

element we shall find as derivative from current in 

inductive one. We present transients as sum 

enforced and natural components 
.;;; CfCnCRfRnRCfCnCLfLnL iiuiiiiiiiii +=+=+=+=  
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Transient functions forced component find in chains at termination transient, the 

taking into account null resistance of ideal inductive coil and the resistance 

infinitely large of capacitor to direct current 
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For determining transient natural component compose characteristically equation 

using the circuitt resistance to alternating current. From circuit delete energy 

sources leaving their inner resistance into calculated scheme, and tearing branch 

with capacitor, we have 
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By introducing into received equation the characteristically equation root by means 

of formal replacement the symbol of р instead symbol j  and received equation 

set equal to zero, we shall receive  
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The fraction is  equal to zero, when numerator is  equal to zero 
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We do ordering of the polynomial relatively of characteristically equation root  р 
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We define the roots of characteristically equation 
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Received roots are conjugated that bears evidence about oscillating transient with 

attenuation decrement 75,99−=  and by the frequency of free oscillating 

srad /5502= . The transient constant time .,107,51749 411 s−−− ===   

For found roots correspond generally form the nature compoonents of transeint 

functions  
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where 321321 ,,,,, BBB  - unknown integration constants. 

Independent initial condition reckon under the commutation laws 
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Dependent initial conditions find as to independent ones and Kirchhof's laws 

which compose at the commutation moment (t=0) 
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We find dependent initial conditions for current in capacitance and omhic 

resistance by means of differentiation the initial equations system 
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Having found dependent initial conditions find the integrating constant 

321321 ,,,,, BBB  in consideration of initial transient currents and voltage  
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In the last equations system in every equation there is two unknown ,B . So as to 

the number of equations corresponded number of unknowns, from last equations 

find derivative over the time  
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and after consideration of the two last systems of equations at the moment of 

commutation (t=0) 
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We substitute digital values into the system of equations 
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For example we find 33 , B  for current Ri . With this end in view from the last 

equations system choose two equations comprising two unknown values 33 , B  
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Deciding for transient current Ri  have of the form 
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The integrating constants rest ,B  define similarly from the same system of 

equations by means of the choice the equations pairs comprising with two 

unknown values ,B  
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Task solving by operational method.  

 

Unnull initial conditions on storage energies 

(capacitive and inductive elements) define 

under the commutation laws 
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 The operation replacement scheme is built 

after commutation moment with allowance 

for unnull initial conditions, Fig.3.7. 

The branches currents calculation we perform 

in operational form by method of mesh 

current  
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Operation image of the scheme branches current 

( ) ( )

( ) ( )( ) ( ) ( )( )

( )
;

)(

)(

)2()(

))0())0(()0(())0((

)()(

1

1

1011
2

12

1011
2

12

22321
2
2232123

2

22323
2

11

pD

pN

pbpbpb

apapa

RRRRRRRRRRCLpRRLCpp

ECRuCRRuELipCRRLip

pIpI

CCLL

L

=
++

++
=

=
−++++−+++++

+++−+++
=

==

 

( )

( ) ( )( )

( ) ( )

( )
;

)(

)(

)2(

)(

)))0(()0()0(())0()0((

)()(

2

2

2021
2

22

2021
2

22

22321

2
2232123

2

2212
2

22

pD

pN

pbpbpb

apapa

RRRRR

RRRRRCLpRRLCp
p

EuECRLiCuRRpCRLiCLup

pIpI

CLCLC

R

=
++

++
=

=















−++++

+−+++++

+−+++++
=

==

 

( ) ( )

( ) ( )( ) ( ) ( )

;
)(

)(

)2()(

))0())0(((

)()()(

3

3

3031
2

32

30

22321
2
2232123

2

13

2211

pD

pN

bpbpb

a

RRRRRRRRRRCLpRRLCp

CuRCRuE

pIpIpI

CC

C

=
++

=

−++++−+++++

−−
=

=−=

 

We find current original Ri  having applicated to it operational image the expansion 

theorem  
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 We find the roots of polynomial 
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Task solving by variable states method.  

As the component of the vector of variable states choose current in inductance and 

voltage on capacitance. Relatively chosen variable states under second Kirchhgof's 

law compose the equations of relatively independent contours  
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From the equations system we separate out explicitly equations in normal Cauchy's 

form 
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From differential equations we pass on to incremental equations 
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By the first order Euler,s method we shall integrate the received equations system 

(к – the integrating running interval of ; к-1 – the previous interval of integrating; 

t – integrating step). 
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The more exact integrating method there is Runge-Kutt method, which actualized 

in environment of MathCAD. The printout of the algorithm of the calculation of 

transient by the variable states method in environment of MathCAD, is  present on 

Fig. 3.8.  



 
 

 

Fig. 3.8. 

 

 

 

 

 

 

 

The calculation of transient by the variable states method in linear 

circuit with two energy storages  

The circuit parameters initial value assignment (Fig. 15) 
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where ТР – the transient account time which is  equal to five of transient 

constant time 

Determining of independent initial conditions under the commutation 

laws 
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Digital integrating the derivative states variable by the Runge-Kutt 

method with constant integrating step t DT 
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Capacitance voltage and induction current in the functions of time 
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3.5. The circuit parameters calculation of transients at action in the 

circuit of power supply with the arbitrary form of output signal  
 

At the power supply output signal arbitrary form calculation is performed on basis 

of the circuit input signal  piecewise-linear approximation and the reaction  search 

of circuit with using of Duhamel integral. 

  
 

Task.  

It is Given electric circuit, Fig. 3.9.а, on input which acts current source, 

output signal of one )(tJS  changes according to given law Fig. 3.9.b. 

There is necessary determining law of current and voltage variation in the 

circuit branches 

 

Task solving.  

In order to take advantage of Duhamel integral there is necessary 

described the circuit input current. The output signal of current source, 

according to the graph Fig. 3.9.b 
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We find transients by classical approach  
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We shall notice that the normolized transient functions )(),( 31 thth  dimensionless, 

function )(2 th  has of dimension of resistance, that is why it is called by transient 

resistance which changes in the time functions in this case according to 

exponential law.  

We find of electric circuit currents and voltages on the sections of piecewise-linear 

approximation input current with using of Duhamel integral  
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where )(ty – desired quantity circuit branch reaction; x –  integrating parameter; 

)( xth −  – shifted normolized transient function; )(xJS  – derivative from input 

signal over the integrating parameter x. 

For researched circuit Fig. 4.2, having in the time period 10 tt   source current in 

t=0 stepwise increases from null value till value А/2, and then linearly increases till 

value А as to given law )(2 tJS  
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On the second approximation stage 21 ttt   input current is given by function 

)(3 tJS  and continues the circuit reaction on influence )(2 tJS   
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Because is absent the stepwise action at the time moment 1tt =  and does not 

change input action on time 21 ttt   that circuit reaction is determined by action 

which was on the previous interval of approximation.  

On the third section of approximation input signal begins to decrease from value А 

till value А/2 under the law )(3 tJS  
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On the fourth section of approximation continue to act current and 

voltage transient functions from action at previous  time sections and add 

negative current stepwise at the moment 3tt =  
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The branches reactions rest are calculated similarly as to mentioned algorithm. 

 

 

3.6. The personal computative-graphic task “The calculation of 

transients in linear circuits” 

 

The personal job consists of three tasks. The first task envisages the calculation of 

transient function by classical approach in circuits with have two energy storages, 

second task – calculation this transient function by operational method and third –

calculation of transient function in circuits with one energy storage at arbitrary 

form of energy source output signal. 

Tasks 1, 2. В In electric circuit Fig.3.10-3.29 perform commutation. In circuit 

there is act DC EMF Е. The parameters of circuit are  given in Table 3.1. Is needed 

determine in time the law of variation transient function after commutation 

moment in one of the scheme branche. Task to decide by two methods: classic and 

operational. On the grounds of finded analytic expression for transient function to 

build the graph of the found value  change on interval beginning from the 

commutation moment and till the value of time determined 5 maximal time 

constant, when natural component to decline till 99% from initial value. 

Guidance. 

1. Equation for the operational images of scheme Fig.3.11 is recommended 

compose as to the method of node potentials with allowance for having in the 

scheme of energy sources and unnull initial condition. 

2. In scheme Fig.3.20, with the purpose of the composing simplification of 

characteristically equation and equations for operational images the left scheme 

contour 321 ,,, RRRE  is recommended in calculations to replace by equivalent 

power supply with inner ideal power supply and inner resistance. 
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Task 3. There is given electric scheme, Fig.3.30-3.35, on input one which acts 

voltage that changed in time as to known law ( )tu1 . Is needed to determine law of 

current variation in one of the scheme branches or variation voltage on the given 

scheme district . In Table 3.2 according to the number of variant is  specified the 
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number of picture, on which is showing the input voltage graph change in the time, 

Fig.3.36-3.45. The circuit parameters CLR ,,  are  given generally type.  

Task is needed to decide with the help of Duhamel integral . Desired quantity 

follows to determine (to write down its analytic expression) for all time tintervals. 

Depending on statement of problems complete answer will comprise two or three 

summand, each of which is correct only in the definite borders of the change of 

time t.  

In every answer follows to fulfil the adduction of similar members relatively of 

coefficients tee
tbtb
,, 21  and separate the constant component.  

Note. On Fig.3.40, 3.41, 3.45 input voltage is  given with two indexes. The first 

index (index 1) points at input voltage, second index (1 or 2) _ on the time interval 

to which belongs input voltage. It is so, for example, 11u  – input voltage for the 

first time interval, 12u  – input voltage for the second time interval. 
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Table 3.1 

Variant Figure Е, V 
L, 

mH 

С, 
F  

1R , 

ohm 
2R , 

ohm 
3R . 

ohm 
4R , 

ohm 
Define 

01 3.14 100 1 10 20 15 5 2 i  

02 3.11 150 2 5 8 10 5 2 Li  

03 3.28 100 1 10 2 2 0 0 i  

04 3.19 120 1 10 3 0 1 1 Ci  

05 3.12 100 5 50 2 8 6 0 i  

06 3.10 50 1 1500 2 13 1 4 Ri  

07 3.20 120 10 10 10 90 1000 1000 Li  

08 3.27 200 1 20 4 4 2 0 Ri  

09 3.13 100 1 10 50 25 25 0 Cu  

10 3.26 300 5 4 10 20 10 20 Cu  
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Continue of Table 3.1 

Variant Figure Е, V 
L, 

mH 

С, 
F  

1R , 

ohm 
2R , 

ohm 
3R . 

ohm 
4R , 

ohm 
Define 

11 3.29 100 1 10 20 4 16 2 2Ru  

12 3.24 150 4 5 6 10 5 4 Cu  

13 3.15 30 1 2б5 10 10 10 0 Cu  

14 3.16 200 10 10 100 0 50 100 Li  

15 3.21 100 1 10 10 10 4 0 i  

16 3.25 50 2 1670 1 2 1 5 i  

17 3.17 120 10 10 10 90 1000 1000 Li  

18 3.22 120 1 10 8 8 8 4 Ci  

19 3.18 200 1 10 10 20 50 20 Li  

20 3.23 50 1 100 2 8 10 10 Li  

21 3.14 100 1 10 20 20 0 2 Lu  

22 3.11 150 2 5 5 10 5 5 Ci  

23 3.28 100 1 10 1 3 0 0 Ri  

24 3.19 120 1 10 1 2 1 1 Li  

25 3.12 100 5 50 3 8 5 0 Cu  

26 3.10 50 1 1500 2 13 2 3 Li  

27 3.20 120 10 10 20 80 1000 1000 Ci  

28 3.27 200 1 20 6 3 2 0 Li  

29 3.13 100 1 10 50 20 30 0 Lu  

30 3.26 300 5 4 15 20 5 20 Ci  

31 3.29 100 1 10 20 17 3 2 Li  

32 3.24 150 4 5 9 10 5 1 Lu  

33 3.15 30 1 2,5 5 10 15 0 Li  

34 3.16 200 10 10 50 50 50 100 3Ru  

35 3.21 100 1 10 5 15 4 0 Lu  

36 3.25 50 2 1670 1 2 3 3 2Ru  

37 3.17 120 10 10 20 80 1000 1000 Ci  

38 3.22 120 1 10 12 6 8 4 Li  

39 3.18 200 1 10 10 10 50 30 Ci  

41 3.14 100 1 10 20 2 18 2 Cu  

42 3.11 150 2 5 4 10 5 6 Ri  

43 3.28 100 1 10 1,5 2,5 0 0 Ci  



Continue of Table 3.1 

Variant Figure Е, V 
L, 

mH 

С, 
F  

1R , 

ohm 
2R , 

ohm 
3R . 

ohm 
4R , 

ohm 
Define 

44 3.19 120 1 10 2 1 1 1 2Ru  

45 3.12 100 5 50 6 8 2 0 Li  

46 3.10 50 1 1500 2 13 3 2 Lu  

47 3.20 120 10 10 30 70 1000 1000 Ri  

48 3.27 200 1 20 12 2,4 2 0 Ci  

49 3.13 100 1 10 50 10 40 0 Li  

50 3.26 300 5 4 3 20 17 20 Li  

51 3.29 100 1 10 20 8 12 2 Lu  

52 3.24 150 4 5 0 10 5 10 i  

53 3.15 30 1 2,5 15 10 5 0 i  

54 3.16 200 10 10 25 75 50 100 Cu  

55 3.21 100 1 10 15 5 4 0 Ci  

56 3.25 50 2 1670 1 2 3 3 Lu  

57 3.17 120 10 10 30 70 1000 1000 Ri  

58 3.22 120 1 10 24 4,8 8 4 Ri  

59 3.18 200 1 10 10 25 50 15 i  

60 3.23 50 1 100 4 6 10 10 Ri  

61 3.14 100 1 10 20 10 10 2 Cu  

62 3.11 150 2 5 7 10 5 3 Lu  

63 3.28 100 1 10 3 1 0 0 Lu  

64 3.19 120 1 10 1,5 1,5 1 1 Lu  

65 3.12 100 5 50 3 8 5 0 Cu  

66 3.10 50 1 1500 2 13 4 1 i  

67 3.20 120 10 10 40 60 1000 1000 Lu  

68 3.27 200 1 20 3 6 2 0 Lu  

69 3.13 100 1 10 50 30 20 0 i  

70 3.26 300 5 4 6 20 14 20 Lu  

71 3.29 100 1 10 20 11 9 2 Cu  

72 3.24 150 4 5 3 10 5 7 Ci  

73 3.15 30 1 2,5 12 10 8 0 Ci  

74 3.16 200 10 10 0 100 50 100 Lu  

75 3.21 100 1 10 15 5 4 0 Ci  

76 3.25 50 2 1670 1 2 4 2 Cu  



Continue of Table 3.1 

Variant Figure Е, V 
L, 

mH 

С, 
F  

1R , 

ohm 
2R , 

ohm 
3R . 

ohm 
4R , 

ohm 
Define 

77 3.17 120 10 10 40 60 1000 1000 Lu  

78 3.22 120 1 10 6 12 8 4 Cu  

79 3.18 200 1 10 10 30 50 10 Lu  

80 3.23 50 1 100 5 5 10 10 Lu  

81 3.14 100 1 10 20 16 4 2 4Ru  

82 3.11 150 2 5 10 10 5 0 Cu  

83 3.28 100 1 10 4 0 0 0 Cu  

84 3.19 120 1 10 0 3 1 1 Cu  

85 3.12 100 5 50 4 8 4 0 Lu  

86 3.10 50 1 1500 2 13 5 0 1Ru  

87 3.20 120 10 10 50 50 1000 1000 Cu  

88 3.27 200 1 20 4 4 2 0 Cu  

89 3.13 100 1 10 50 35 15 0 Ci  

90 3.26 300 5 4 4 20 16 20 1Ru  

91 3.29 100 1 10 20 13 7 2 Ci  

92 3.24 150 4 5 2 10 5 8 1Ru  

93 3.15 30 1 2,5 8 10 12 0 Lu  

94 3.16 200 10 10 75 25 50 100 3Ru  

95 3.21 100 1 10 13 7 4 0 3Ru  

96 3.25 50 2 1670 1 2 5 1 1Ru  

97 3.17 120 10 10 50 50 1000 1000 Cu  

98 3.22 120 1 10 8 8 8 4 Lu  

99 3.18 200 1 10 10 18 50 22 Cu  

00 3.23 50 1 100 6 4 10 10 Cu  

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.2 

Variant Scheme 

Input 

voltage 

graph 

Define Variant 
Schem

e 

Input 

voltage 

graph 

Define 

01 3.32 3.36 ( )ti4  36 3.33 3.38 ( )ti2  

02 3.31 3.36 ( )tRi1  37 3.32 3.39 ( )tuC  

03 3.33 3.36 ( )tRi3  38 3.35 3.45 ( )tu2  

04 3.32 3.38 ( )ti1  39 3.32 3.43 ( )ti2  

05 3.30 3.36 ( )ti1  40 3.32 3.37 ( )ti3  

06 3.31 3.37 ( )ti2  41 3.32 3.40 ( )ti4  

07 3.33 3.40 ( )ti1  42 3.31 3.44 ( )tRi1  

08 3.34 3.36 ( )ti1  43 3.31 3.40 ( )tRi3  

09 3.34 3.39 ( )ti2  44 3.34 3.44 ( )ti1  

10 3.30 3.37 ( )tuL  45 3.30 3.40 ( )ti1  

11 3.33 3.36 ( )tRi3  46 3.31 3.44 ( )ti2  

12 3.31 3.36 ( )ti3  47 3.33 3.44 ( )ti1  

13 3.34 3.36 ( )ti3  48 3.34 3.44 ( )ti1  

14 3.31 3.36 ( )tuC  49 3.34 3.45 ( )ti2  

15 3.34 3.37 ( )tuL  50 3.30 3.39 ( )tuL  

16 3.33 3.37 ( )ti2  51 3.33 3.42 ( )tRi3  

17 3.32 3.43 ( )tuC  52 3.31 3.45 ( )ti3  

18 3.35 3.40 ( )tu2  53 3.34 3.42 ( )ti3  

19 3.32 3.36 ( )ti2  54 3.31 3.44 ( )tuC  

20 3.32 3.36 ( )ti3  55 3.34 3.39 ( )tuL  

21 3.32 3.37 ( )ti4  56 3.31 3.39 ( )ti2  

22 3.31 3.39 ( )tRi1  57 3.44 3.40 ( )tuC  

23 3.33 3.39 ( )tRi3  58 3.35 3.42 ( )tu2  

24 3.32 3.39 ( )ti1  59 3.32 3.40 ( )ti2  

25 3.30 3.37 ( )ti1  60 3.32 3.39 ( )ti3  

26 3.31 3.38 ( )ti2  61 3.32 3.38 ( )ti4  

27 3.33 3.41 ( )ti1  62 3.31 3.45 ( )tRi1  

28 3.34 3.40 ( )ti1  63 3.33 3.41 ( )tRi3  

29 4.34 3.41 ( )ti2  64 3.32 3.45 ( )ti1  

30 3.30 3.38 ( )tuL  65 3.30 3.39 ( )ti1  

31 3.33 3.39 ( )tRi3  66 3.31 3.45 ( )ti2  

32 3.31 3.44 ( )ti3  67 3.33 3.45 ( )ti1  

 



Continue of Table 3.2 

Variant Scheme 

Input 

voltage 

graph 

Define Variant Scheme 

Input 

voltage 

graph 

Define 

33 3.34 3.39 ( )ti3  68 3.34 3.45 ( )ti1  

34 3.31 3.39 ( )tuC  69 3.34 3.42 ( )ti2  

35 3.34 3.38 ( )tuL  70 3.30 3.42 ( )tuL  

71 3.33 3.43 ( )tRi3  86 3.31 3.42 ( )ti2  

72 3.31 3.42 ( )ti3  87 3.33 3.42 ( )ti1  

73 3.34 3.44 ( )ti3  88 3.34 3.42 ( )ti1  

74 3.31 3.40 ( )tuC  89 3.34 3.43 ( )ti2  

75 3.34 3.40 ( )tuL  90 3.30 3.44 ( )tuL  

76 3.33 3.40 ( )ti2  91 3.33 3.40 ( )tRi3  

77 3.32 3.44 ( )tuC  92 3.31 3.43 ( )ti3  

78 3.35 3.43 ( )tu2  93 3.34 3.45 ( )ti3  

79 3.32 3.41 ( )ti2  94 3.31 3.42 ( )tuC  

80 3.32 3.42 ( )ti3  95 3.34 3.41 ( )tuL  

81 3.32 3.43 ( )ti4  96 3.33 3.41 ( )ti2  

82 3.31 3.43 ( )tRi1  97 3.32 3.36 ( )tuC  

83 3.33 3.44 ( )tRi3  98 3.35 3.36 ( )tu2  

84 3.32 3.42 ( )ti1  99 3.32 3.45 ( )ti2  

85 3.30 3.45 ( )ti1  00 3.32 3.43 ( )ti3  

 

 

3.7. Questions for one's own checking as to the calculation  methods 

of transients in linear circuits 
 

1. Find current value across capacitor at moment of commutation (t=0), if applied 

voltage is U=80 V, and R1=2  , R2=8 , R3=6  . 

 
 

2. Find current value through resister R2 at moment of commutation (t=0), if 

U=150 В, R1=10  , R2=R3=5  . 

 



3. Find current value through resistor R2 at moment of commutation (t=0), if 

U=150 V, R1=10  , R2=5  , R3=5  . 

 
4. Find current value through resistor R1 at moment of commutation (t=0), if 

U=150 V, R1=10  ,R2=5  ,  R3=5 . 

 
 

5. Find current value through resister R1 at moment of commutation (t=0), if 

U=150 V, R1=10  , R2=5  ,  R3=5  . 

 
 

6. Find current value through resister R1 at moment of commutation (t=0), if I=10 

А, R=R1=10  . 

 
7. Find current value through resister R1 at moment of commutation (t=0), if I=10 

А, R1=R=10  . 

 
 

8. Find current value through capacitor at moment of commutation (t=0), if 

applied current is I=10 А; and R=10  . 

 
9. Find current value through capacitor at moment of commutation (t=0), if applied 

current is I=10 А; and R=10  . 

 
 

10. Find current value through capacitor at moment of commutation (t=0), if 

applied voltage is U=80 V, and R1=2  , R2=8  ,   R3=6  . 



 
11. Find current value through capacitor at moment of commutation (t=0), if 

applied voltage is U=80 V, and R1=2  , R2=8  , R3=6  . 

 
 

12. Find current value through resistor R3 at moment of commutation (t=0), if 

applied voltage is U=80 V, and R1=2  , R2=8  ,   R3=6  .  

 
13. Find current value through resistor R3 at moment of commutation (t=0), if 

applied voltage is U=80 V, and R1=2  , R2=8  ,   R3=6  . 

 
14. Find current value through resistor R1 at moment of commutation (t=0), if 

applied voltage is U=80 V, and R1=2  , R2=8  ,   R3=6  . 

 
15. Find current value across resistor R1 at moment of commutation (t=0), if 

applied voltage is U=80 V, and R1=2  , R2=8  ,   R3=6  . 

 
16. Define current value across resistor R2 at moment of commutation (t=0), if I=1 

A, R0=R2=2  , R1=8  , R3=90  . 

 

 
 

17. Define current value through resistor R2 at moment of commutation (t=0), if 

I=1 А, R0=R2=2  , R1=8  , R3=90  . 

 



18. Find voltage value across inductance ( )0uL  at moment of commutation (t=0), 

if I=1 A, R0=R2=2  , R1=8  , R=3,9  . 

 
19. Find voltage value across inductance ( )0uL  at moment of commutation (t=0), 

if I=1 A, R0=R2=2 , R1=8  , R3=8  . 

 
 

20. Find voltage value over inductance ( )0uL  at moment of commutation (t=0), if 

U=160 V, R1=8 , R2=3  , R3=6  . 

 
21. Find voltage value across inductance ( )0uL  at moment of commutation (t=0), 

if U=160 V, R1=8 , R2=3  , R3=6  . 

 
22. Define current value through resistor R1 at moment of commutation (t=0), if 

U=160 V, R1=8  , R2=3  , R3=6  . 

 
23. Define current value through resistor R3 at moment of commutation (t=0), if 

U=160 V, R1=8  , R2=3  , R3=6  . 

 
24. Define current value through resistor R3 at moment of commutation (t=0), if 

U=160 V, R1=8  , R2=3  , R3=6  . 

 
25. Define current value through resistor R2 at moment of commutation (t=0), if 

U=160 V, R1=8  , R2=3  , R3=6  . 

 



26. Find the constant time   of transient process if given: R1=2  ,      R2=8  , 

R3=6  , C=10 F . 

 
 

27. Find the constant time   of transient process if given: R1=2  ,      R2=8  , 

R3=6  , C=10 F . 

 
 

28. Find the constant time   of transient process if given: R0=R2=2  , R1=8  , 

R3=90  , L=100 mH. 

 
29. Find the constant time   of transient process if given:  R0=R2=2  , R1=8  , 

R3=90  , L=100 mH. 

 
 

30. Find the constant time   of transient process if given: R1=8  , R2=3  , 

R3=6  , L=100 mH. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Apendixes. 
 

Appendix A. Fourier series of Functions with Periodicity 2π 

 
 

Graphics of Functions Fourier Series 
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Appendix В. A short table of Laplace transforms, in each case p is assumed to be 

sufficiently large that the transform exists. 
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